Publications by authors named "Pramanik Krishna"

Cartilage tissue damage and diseases are the most common clinical situation that occurs because of aging and injury, thereby causing pain and loss of mobility. The inability of cartilage tissue to self-repair is instrumental in developing tissue engineered substitutes. To this effect, the present study aims to engineer cartilage construct by culturing umbilical cord blood-derived human mesenchymal stem cells (hMSCs) on novel 3D porous scaffolds developed from natural biopolymers, silk fibroin (SF) and chitosan (CS), with addition of cartilage matrix components, glucosamine (Gl) and chondroitin sulfate (Ch).

View Article and Find Full Text PDF

Titanium and its alloys especially Ti6Al4V have long been used in biomedical implants. Although, Ti6Al4V is biocompatible, yet there has been consistent effort to improve its osteoconductive and osteogenic property to enhance the implant performance. In this regard, surface modification of Ti6Al4V implants with TiO nanotubes and subsequent application of biopolymeric coating has started emerging as a promising approach.

View Article and Find Full Text PDF

Aim: Cartilage damage is a common age-related problem that leads to progressive proteoglycan loss. Glucosamine stimulates proteoglycan synthesis and, therefore, its effect on the cartilage extracellular matrix synthesis over silk fibroin:chitosan (SF:CS) tissue-engineered scaffold was investigated for cartilage construct generation.

Materials & Methods: Human mesenchymal stem cells (hMSCs) were cultured and differentiated over SF:CS-glucosamine porous scaffold, under dynamic culture condition in spinner flask bioreactor.

View Article and Find Full Text PDF

This paper investigates the efficiency of the organic acids on the pretreatment of an industrially generated cotton gin waste for the removal of lignin, thereby releasing cellulose and hemicellulose as fermentable sugar components. Cotton gin waste was pretreated with various organic acids namely lactic acid, oxalic acid, citric acid, and maleic acid. Among these, maleic acid was found to be the most efficient producing maximum xylose sugar (126.

View Article and Find Full Text PDF

The primary aim of this study was to fabricate gelatin/chitosan/β-TCP (GCT) composite scaffold to improve its compressive mechanical behaviour and in-vivo biocompatibility with predictable degradation rate. Beta tricalcium phosphate (β-TCP) powder was synthesized in size range between 70-100 nm using aqueous precipitation route at a fixed Ca/P molar ratio of 1.5:1 at pH 10 and after subsequent heat treatment of as precipitated powder at 800 °C for 4 hours.

View Article and Find Full Text PDF

Chondroitin sulfate (Ch) is one of the main structural components of cartilage tissue, therefore, its presence in tissue engineered scaffold is expected to enhance cartilage regeneration. Previously, silk fibroin/chitosan (SF/CS) blend was proven to be a potential biomaterial for tissue development. In this study, the effect of Ch on physicochemical and biological properties of SF/CS blend was investigated and scaffolds with 0.

View Article and Find Full Text PDF

Cartilage construct generation includes a scaffold with appropriate composition to mimic matrix of the damaged tissue on which the stem cells grow and differentiate. In this study, umbilical cord blood (UCB) derived human mesenchymal stem cells (hMSCs) were seeded on freeze dried porous silk-fibroin (SF)/chitosan (CS) scaffolds. Influence of static and dynamic (spinner flask bioreactor) culture conditions on the developing cartilage construct were studied by in-vitro characterization for viability, proliferation, distribution, and chondrogenic differentiation of hMSCs over the scaffold.

View Article and Find Full Text PDF

Wound healing/cicatrization is a complex series of intricate processes that involve renewal of skin/epidermis after injury. A large number of ethno-medicinal plants/plant extracts are used by tribal and folklore traditions in developing world for the treatment of wounds, burns and cuts in distinct appearances. Moreover, plants/plant extracts have a significant history and successful clinical track record as indigenous drugs in wound repair systems.

View Article and Find Full Text PDF

Considering the fact that life on Earth is carbon based, carbon materials are being introduced in biological systems. However, very limited information exists concerning the potential effects of different structures of carbon materials on biological systems. In the present study, poly(lactic-co-glycolic acid) (PLGA)-based carbonaceous composites were developed by reinforcing 1 wt% of three different carbon-based materials i.

View Article and Find Full Text PDF

Deformities in tissues and organs can be treated by using tissue engineering approach offering the development of biologically functionalized scaffolds from a variety of polymer blends which mimic the extracellular matrix and allow adjusting the material properties to meet the defect architecture. In recent years, research interest has been shown towards the development of chitosan (CS) based biomaterials for tissue engineering applications, because of its minimal foreign body reactions, intrinsic antibacterial property, biocompatibility, biodegradability and ability to be molded into various geometries and forms thereby making it suitable for cell ingrowth and conduction. The present work involves the fabrication of nanofibrous scaffold from CS and poly(vinyl alcohol) blends by free-surface electrospinning method.

View Article and Find Full Text PDF

Green synthesis by using biological agents has been a simple and effective approach for the synthesis of various forms of nanoparticles. The present investigation was intended to synthesis Ag-NPs and ZnO-NPs under photo-condition using the aqueous extracts of two mangrove plants namely Heritiera fomes and Sonneratia apetala and evaluate their potential biomedical applications. The formation of nanoparticles in aqueous solution of H.

View Article and Find Full Text PDF

Objective: To develop a cost-effective, non-toxic and xeno-free freezing solution for the preservation of adipose tissue-derived stem cells (hADSC) with a long shelf-life.

Results: The potential of various hydrocolloids and organic osmolytes as cryoprotectants and individual components of phosphate buffered saline (PBS) as carrier media were evaluated to formulate a freezing solution for the cryopreservation of hADSCs. Among the hydrocolloids, the highest viability, 55 %, was achieved with post-thawed (after 48 h storage at -80 °C) hADSCs cryopreserved in 10 % (v/v) polyvinylpyrrolidone (PVP) using PBS as carrier media.

View Article and Find Full Text PDF

The aim of the present study was to prepare and characterize bioglass-natural biopolymer based composite scaffold and evaluate its bone regeneration ability. Bioactive glass nanoparticles (58S) in the size range of 20-30 nm were synthesized using sol-gel method. Porous scaffolds with varying bioglass composition from 10 to 30 wt% in chitosan, gelatin matrix were fabricated using the method of freeze drying of its slurry at 40 wt% solids loading.

View Article and Find Full Text PDF

Silk fibroin/chitosan blend has been reported to be an attractive biomaterial that provides a 3D porous structure with controllable pore size and mechanical property suitable for tissue engineering applications. However, there is no systematic study for optimizing the ratio of silk fibroin (SF) and chitosan (CS) which seems to influence the scaffold property to a great extent. The present research, therefore, investigates the effect of blend ratio of SF and CS on scaffold property and establishes the optimum value of blend ratio.

View Article and Find Full Text PDF

The present study delineates the synthesis and characterization of cobalt doped proangiogenic-osteogenic hydroxyapatite. Hydroxyapatite samples, doped with varying concentrations of bivalent cobalt (Co(2+)) were prepared by the ammoniacal precipitation method and the extent of doping was measured by ICP-OES. The crystalline structure of the doped hydroxyapatite samples was confirmed by XRD and FTIR studies.

View Article and Find Full Text PDF

Investigating the interaction patterns at nano-bio interface is a key challenge for safe use of nanoparticles (NPs) to any biological system. The study intends to explore the role of interaction pattern at the iron oxide nanoparticle (IONP)-bacteria interface affecting antimicrobial propensity of IONP. To this end, IONP with magnetite like atomic arrangement and negative surface potential (n-IONP) was synthesized by co-precipitation method.

View Article and Find Full Text PDF

Regardless of rapid progression in the field of autophagy, it remains a challenging task to understand the cross talk with apoptosis. In this study, we overexpressed Ulk1 in HeLa cells and evaluated the apoptosis-inducing potential of the Ulk1 gene in the presence of cisplatin. The gain of function of Ulk1 gene showed a decline in cell viability and colony formation in HeLa cells.

View Article and Find Full Text PDF
Article Synopsis
  • Cardiovascular disease (CVD) causes about 30% of global deaths and includes various heart and blood vessel disorders, posing challenges for effective treatment delivery systems.
  • Current CVD therapies face limitations such as side effects and complications, highlighting the need for innovative approaches.
  • The review covers advancements in CVD risk factors, therapies like stem cell treatment and gene delivery, and explores the potential of molecular and nanotechnology for improved drug delivery and tissue engineering solutions.
View Article and Find Full Text PDF

The present study describes the preparation of extracellular matrix (ECM; from porcine omentum) based chitosan composite films for wound dressing applications. The films were prepared by varying the ECM content, whereas, the amount of chitosan was kept constant. The interactions amongst the components of the films were analyzed by FTIR and XRD studies.

View Article and Find Full Text PDF

The objective of this work was to investigate material properties and osteogenic differentiation of human mesenchymal stem cells (hMSCs) in genipin (GN) crosslinked chitosan/nano β-tricalcium phosphate (CS/nano β-TCP) scaffolds, and compare the results with tripolyphosphate (TPP) crosslinked scaffolds. Porous crosslinked CS/nano β-TCP scaffolds were produced by freeze-gelation using GN (CBG scaffold) and TPP (CBT scaffold) as crosslinkers. The prepared CBT and CBG scaffolds were characterized with respect to porosity, pore size, water content, wettability, compressive strength, mass loss, and osteogenic differentiation of hMSCs.

View Article and Find Full Text PDF

Recently graphene and graphene based composites are emerging as better materials to fabricate scaffolds. Addition of graphene oxide (GO) nanoplatelets (GOnPs) in bioactive polymers was found to enhance its conductivity (σ) and, dielectric permittivity (ϵ) along with biocompatibility. In this paper, human cord blood derived mesenchymal stem cells (CB-hMSCs) were differentiated to skeletal muscle cells (hSkMCs) on spin coated thin GO sheets composed of GOnPs and on electrospun fibrous meshes of GO-PCL (poly-caprolactone) composite.

View Article and Find Full Text PDF

The present study delineates preparation, characterization and application of calcium alginate (CA)-carboxymethyl cellulose (CMC) beads for colon-specific oral drug delivery. Here, we exploited pH responsive swelling, mucoadhesivity and colonic microflora-catered biodegradability of the formulations for colon-specific drug delivery. The CA-CMC beads were prepared by ionic gelation method and its physicochemical characterization was done by SEM, XRD, EDAX, DSC and texture analyzer.

View Article and Find Full Text PDF