Publications by authors named "Prakit Boonpornprasert"

The emergence of the lumpy skin disease virus (LSDV) was first detected in north-eastern Thailand in March 2021. Since then, the abrupt increase of LSD cases was observed throughout the country as outbreaks have spread rapidly to 64 out of a total of 77 provinces within four months. Blood, milk, and nodular skin samples collected from affected animals have been diagnosed by real-time PCR targeting the gene.

View Article and Find Full Text PDF

African swine fever virus (ASFV) causes a fatal infectious disease affecting domestic pigs and wild boars. ASFV is highly stable and easily transmitted by consumption of contaminated swine feed and pork products. Heat treatment of feed ingredients is a means to minimize the risk of contamination through swine feed consumption.

View Article and Find Full Text PDF

Background: African swine fever (ASF) is a lethal contagious disease affecting both domestic pigs and wild boars. Even though it is a non-zoonotic disease, ASF causes economic loss in swine industries across continents. ASF control and eradication are almost impossible since effective vaccines and direct antiviral treatment are not available.

View Article and Find Full Text PDF

The indirect transmission of the African swine fever virus (ASFV) is through contaminated fomite, feed ingredients, pork- and pig-derived products, including swill, as ASFV is highly stable within suitable organic material. Some previous studies have indicated that ASFV outbreaks were associated with swill feeding, particularly in smallholder pig farms. These outbreaks emphasize the significance of the appropriate heat treatment of swill to eliminate ASFV residual titer.

View Article and Find Full Text PDF

Surveillance studies of influenza A virus of swine (IAV-S) have accumulated information regarding IAVs-S circulating in Thailand, but how IAVs-S evolve within a farm remains unclear. In the present study, we isolated 82 A(H1N1)pdm09 and 87 H3N2 viruses from four farms from 2011 through 2017. We then phylogenetically and antigenically analyzed the isolates to elucidate their evolution within each farm.

View Article and Find Full Text PDF

Following the 2009 H1N1 pandemic, surveillance activities have been accelerated globally to monitor the emergence of novel reassortant viruses. However, the mechanism by which influenza A viruses of swine (IAV-S) acquire novel gene constellations through reassortment events in natural settings remains poorly understood. To explore the mechanism, we collected 785 nasal swabs from pigs in a farm in Thailand from 2011 to 2014.

View Article and Find Full Text PDF