Forte is an open-source library specialized in multireference electronic structure theories for molecular systems and the rapid prototyping of new methods. This paper gives an overview of the capabilities of Forte, its software architecture, and examples of applications enabled by the methods it implements.
View Article and Find Full Text PDFThis study investigates cutting-edge synthetic chemistry approaches for designing and producing innovative antimalarial drugs with improved efficacy and fewer adverse effects. Novel amino (-NH) and hydroxy (-OH) functionalized 11-azaartemisinins 9, 12, and 14 were synthesized along with their derivatives 11a, 13a-e, and 15a-b through ART and were tested for their AMA (antimalarial activity) against Plasmodium yoelii via intramuscular (i.m.
View Article and Find Full Text PDFBioorg Med Chem Lett
January 2024
Following the economic and social state of humanity, Malaria is categorized as one of the life-threatening illness epidemics in under developed countries. For the eradication of the same, 1,2,4-trioxanes 17a1-a2, 17b1-b2, 17c1-c2 15a-c, 18 and 19 have been synthesized continuing the creation of a novel series. Additionally, these novel compounds were tested for their effectiveness against the multidrug-resistant Plasmodium yoelii nigeriensis in mice model using both oral and intramuscular (im) administration routes.
View Article and Find Full Text PDFMaize is an important industrial crop where yield and quality enhancement both assume greater importance. Clean production technologies like conservation agriculture and integrated nutrient management hold the key to enhance productivity and quality besides improving soil health and environment. Hence, maize productivity and quality were assessed under a maize-wheat cropping system (MWCS) using four crop-establishment and tillage management practices [FBCT-FBCT (Flat bed-conventional tillage both in maize and wheat); RBCT-RBZT (Raised bed-CT in maize and raised bed-zero tillage in wheat); FBZT-FBZT (FBZT both in maize and wheat); PRBZT-PRBZT (Permanent raised bed-ZT both in maize and wheat], and five P-fertilization practices [P (100% soil applied-P); P + 2FSP (50% soil applied-P + 2 foliar-sprays of P through 2% DAP both in maize and wheat); P + PSB + AM-fungi; P + PSB + AMF + 2FSP; and P(100% NK with no-P)] in split-plot design replicated-thrice.
View Article and Find Full Text PDFA new series of 1,2,4-trioxanes 9a1-a4, 9b1-b4, 10-13 and 9c1-c4 were synthesized and evaluated against multidrug-resistant Plasmodium yoelii nigeriensis in Swiss mice via oral and intramuscular (i.m.) routes.
View Article and Find Full Text PDFMalaria epidemics represent one of the life-threatening diseases to low-income lying countries which subsequently affect the economic and social condition of mankind. In continuation in the development of a novel series of 1,2,4-trioxanes 13a1-c1, 13a2-c2, and 13a3-c3 have been prepared and further converted into their hemisuccinate derivatives 14a1-c1, 14a2-c2, and 14a3-c3 respectively. All these new compounds were evaluated for their antimalarial activity against multidrug-resistant Plasmodium yoelii nigeriensis in mice by both oral and intramuscular (im) routes.
View Article and Find Full Text PDFThe method of increments and frozen natural orbital (MI-FNO) framework is introduced to help expedite the application of noisy, intermediate-scale quantum (NISQ) devices for quantum chemistry simulations. The MI-FNO framework provides a systematic reduction of the occupied and virtual orbital spaces for quantum chemistry simulations. The correlation energies of the resulting increments from the MI-FNO reduction can then be solved by various algorithms, including quantum algorithms such as the phase estimation algorithm and the variational quantum eigensolver (VQE).
View Article and Find Full Text PDFAn emerging experimental framework suggests that plants under biotic stress may actively seek help from soil microbes, but empirical evidence underlying such a 'cry for help' strategy is limited. We used integrated microbial community profiling, pathogen and plant transcriptive gene quantification and culture-based methods to systematically investigate a three-way interaction between the wheat plant, wheat-associated microbiomes and Fusarium pseudograminearum (Fp). A clear enrichment of a dominant bacterium, Stenotrophomonas rhizophila (SR80), was observed in both the rhizosphere and root endosphere of Fp-infected wheat.
View Article and Find Full Text PDFThe concept of gene vectors for therapeutic applications has been known for several years, but it is far from revealing its actual potential. With the advent of hollow cylindrical carbon nanomaterials such as carbon nanotubes (CNTs), researchers have invented several new tools to deliver genes at the required site of action in mammalian and plant cells. The ease of diversified functionalization has allowed CNTs to be by far the most adaptable non-viral vector for gene therapy.
View Article and Find Full Text PDFProtic dicationic ionic liquids (PDILs) have attracted growing attention owing to their applications in domains of electrochemistry, proton conducting materials and other diverse areas. In the present work protic dicationic ionic liquids (PDILs) comprising of quaternary ammonium-, imidazolium- or pyrrolidinium-dications and bis(trifluoromethanesulfonyl)imide (TfN‾) anion have been modelled as the dication-(TfN) complexes. Electronic structure, vibrational and H NMR spectra of these complexes have been derived employing the M06-2x density functional theory.
View Article and Find Full Text PDFIn the present work protic ionic liquids (PILs) composed of imidazolium-, quaternary ammonium-, or pyrrolidinium-dications and acetate (OAc) anion have been modeled as the dication-anion complexes through the M06-2x based density functional theory. It has been shown that cation-anion interaction energies are larger for the PILs containing the quaternary ammonium cation, which can be attributed to strong hydrogen bonding from the terminal ammonium protons. Underlying N-H···O and C-H···O hydrogen bonding, electrostatic, and van der Waals interactions are unraveled using the natural bond orbital analyses in conjunction with the quantum theory of atoms in molecules (QTAIM) and noncovalent interaction index reduced density gradient methods.
View Article and Find Full Text PDFJ Community Hosp Intern Med Perspect
October 2017
Myxedema coma is a decompensated hypothyroidism which occurs due to long-standing, undiagnosed, or untreated hypothyroidism. Untreated hypothyroidism is known to affect almost all organs including the heart. It is associated with a decrease in cardiac output, stroke volume due to decreased myocardial contractility, and an increase in systemic vascular resistance.
View Article and Find Full Text PDFPrimary Pulmonary Diffuse Large B Cell Lymphoma (PPDLBCL) is an extremely rare entity, which exhibits an aggressive behavior by compressing local blood vessels. It represents only 0.04% of all lymphoma cases and is extremely rare in young age.
View Article and Find Full Text PDFWe propose an economical state-specific approach to evaluate electronic excitation energies based on the driven similarity renormalization group truncated to second order (DSRG-PT2). Starting from a closed-shell Hartree-Fock wave function, a model space is constructed that includes all single or single and double excitations within a given set of active orbitals. The resulting VCIS-DSRG-PT2 and VCISD-DSRG-PT2 methods are introduced and benchmarked on a set of 28 organic molecules [M.
View Article and Find Full Text PDFPsi4 is an ab initio electronic structure program providing methods such as Hartree-Fock, density functional theory, configuration interaction, and coupled-cluster theory. The 1.1 release represents a major update meant to automate complex tasks, such as geometry optimization using complete-basis-set extrapolation or focal-point methods.
View Article and Find Full Text PDFWe present a parallel implementation to compute electron spin resonance g-tensors at the coupled-cluster singles and doubles (CCSD) level which employs the ACES III domain-specific software tools for scalable parallel programming, i.e., the super instruction architecture language and processor (SIAL and SIP), respectively.
View Article and Find Full Text PDFDouble-hybrid density functional approximations (DH-DFAs) provide an accurate description of the electronic structure of molecules by semiempirically mixing density functional and wavefunction theory. In this paper, we investigate the properties of the potential used in such approximations. By using the optimized effective potential approach, the consistent Kohn-Sham (KS) potential for a double-hybrid functional (including the second-order perturbational contribution) can be generated.
View Article and Find Full Text PDFElectronic structure, binding energies, and spectral characteristics of functionalized asymmetric dicationic ionic liquids (DILs) composed of quaternary ammonium cations substituted with the ethoxyethyl and allyl/3-phenylpropyl/methoxyethoxyethyl/pentyl functionalities on two different nitrogen centers of the dication and the bis(trifluoromethanesulfonyl)imide (TfN) anion were derived employing the dispersion-corrected density functional theory. DILs based on methoxyethoxyethyl-substituted cation reveal stronger binding toward the TfN anion. The measured glass transition temperatures are found to be strongly dependent on the cation-anion binding facilitated through noncovalent interactions with dominant contributions from the electrostatics and hydrogen bonding.
View Article and Find Full Text PDFCore excitation energies are computed with time-dependent density functional theory (TD-DFT) using the ionization energy corrected exchange and correlation potential QTP(0,0). QTP(0,0) provides C, N, and O K-edge spectra to about an electron volt. A mean absolute error (MAE) of 0.
View Article and Find Full Text PDFOrthogonality constrained density functional theory (OCDFT) provides near-edge X-ray absorption (NEXAS) spectra of first-row elements within one electronvolt from experimental values. However, with increasing atomic number, scalar relativistic effects become the dominant source of error in a nonrelativistic OCDFT treatment of core-valence excitations. In this work we report a novel implementation of the spin-free exact-two-component (X2C) one-electron treatment of scalar relativistic effects and its combination with a recently developed OCDFT approach to compute a manifold of core-valence excited states.
View Article and Find Full Text PDFThis paper's objective is to create a "consistent" mean-field based Kohn-Sham (KS) density functional theory (DFT) meaning the functional should not only provide good total energy properties, but also the corresponding KS eigenvalues should be accurate approximations to the vertical ionization potentials (VIPs) of the molecule, as the latter condition attests to the viability of the exchange-correlation potential (VXC). None of the prominently used DFT approaches show these properties: the optimized effective potential VXC based ab initio dft does. A local, range-separated hybrid potential cam-QTP-00 is introduced as the basis for a "consistent" KS DFT approach.
View Article and Find Full Text PDFCoupled cluster (CC) methods provide highly accurate predictions of molecular properties, but their high computational cost has precluded their routine application to large systems. Fortunately, recent computational developments in the ACES III program by the Bartlett group [the OED∕ERD atomic integral package, the super instruction processor, and the super instruction architecture language] permit overcoming that limitation by providing a framework for massively parallel CC implementations. In that scheme, we are further extending those parallel CC efforts to systematically predict the three main electron spin resonance (ESR) tensors (A-, g-, and D-tensors) to be reported in a series of papers.
View Article and Find Full Text PDFDifferent approaches are compared for relativistic density functional theory (DFT) and Hartree-Fock (HF) calculations of electron-nucleus hyperfine coupling (HFC) in molecules with light atoms, in transition metal complexes, and in selected actinide halide complexes with a formal metal 5f(1) configuration. The comparison includes hybrid density functionals with range-separated exchange. Within the variationally stable zeroth-order regular approximation (ZORA) relativistic framework, the HFC is obtained (i) with a linear response (LR) method where spin-orbit (SO) coupling is treated as a linear perturbation, (ii) with a spin-polarized approach closely related to a DFT method for calculating magnetic anisotropy (MA) previously devised by van Wüllen et al.
View Article and Find Full Text PDF