This study presents the synthesis and optimization of Methylene polyethyl glycol -Polystyrene (mPEG-PS) Diblock (DIP) copolymer-based solid lipid nanoparticles (SLNs) using ultrasonication for advanced drug delivery systems targeting the human immunodeficiency virus (HIV-1). The mPEG-PS block copolymer was synthesized by ring opening polymerization mechanism under nitrogen atmosphere for 24hrs and characterized using Fourier Transform Infrared Spectroscopy (FTIR) spectroscopy and NMR, confirming the formation of DIP polymers. Optimization of SLNs formulation was achieved through a systematic approach, utilizing response surface methodology, optimal conditions for SLNs synthesis were determined, resulting in nanoparticles with a particle size of 198 nm and an entrapment efficiency of 67.
View Article and Find Full Text PDFEur J Pharm Sci
January 2025
Solid lipid nanoparticles (SLNs) are becoming increasingly favored for their robust biocompatibility and their capacity to enhance drug solubility, particularly for drugs with limited water solubility. This study delves into the effectiveness of the hot melt sonication technique in fabricating SLNs with high drug loading capabilities and sustained release characteristics. Griseofulvin (GF), chosen as a representative drug due to its poor water solubility, was encapsulated into SLNs composed of stearic acid.
View Article and Find Full Text PDFCurr Cancer Drug Targets
October 2024
Cancer stands as one of the leading causes of death worldwide, and lung cancer represents its most aggressive and persistent form. Traditional strategies for addressing lung cancer involve various medical therapies such as radiotherapy, chemotherapy, and surgical excision. Despite their prevalence, these conventional methods lack precision and inadvert-ently cause collateral damage to neighboring healthy cells.
View Article and Find Full Text PDFPharm Nanotechnol
October 2024
The implementation of several innovative drug delivery technologies has made medication distribution more focused and managed in recent years. These days, a vesicular drug delivery system defines the rate of distribution and the site of action in order to improve the action and increase patient compliance; there are various kinds of newly developed vesicular drug delivery systems, including transferosomes, niosomes, aquasomes, ufasomes, pharmacosomes, and phytosomes. Ufasomes are unsaturated fatty acid vesicles with a limited pH range of 7 to 9.
View Article and Find Full Text PDFLamivudine (LMD), an enantiomer of 2'-deoxy-3'-thiacytidine, plays a crucial role in combatting HIV-1 and managing hepatitis B virus infections. Despite its effectiveness, challenges arise from its difficult flowability and tendency to agglomerate during storage, necessitating a granulation step before tablet compression, as direct compression has proven ineffective. This study aimed to optimize Lamivudine spherical agglomerates using response surface methodology, delving into the intricate relationship between design factors (concentration of tween, span, and acetone) and experimental outcomes (yield and particle size) through central composite design.
View Article and Find Full Text PDFCent Nerv Syst Agents Med Chem
May 2024
Background: Alzheimer's Disease (AD) is a neurodegenerative disorder characterized by the progressive formation of extracellular amyloid plaques, intracellular neurofibrillary tangles, inflammation, and impaired antioxidant systems. Early detection and intervention are vital for managing AD effectively.
Objective: This review scrutinizes both in-vivo and in-vitro screening models employed in Alzheimer's disease research.
Nanotechnology is a new science and business endeavour with worldwide economic benefits. Growing knowledge of nanomaterial fabrication techniques has increased the focus on nanomaterial preparation for various purposes. Nanofibers are one-dimensional nanomaterials having distinct physicochemical properties and characteristics.
View Article and Find Full Text PDFBiosensors have been one of the most fascinating topics for scientists for a long time. This is because biological moieties are multifaceted and are unswervingly related to the presence of a healthy atmosphere. The biosensor approach has also endured profound changes in recent years.
View Article and Find Full Text PDFInhaling drugs, on the other hand, is limited mainly by the natural mechanisms of the respiratory system, which push drug particles out of the lungs or make them inefficient once they are there. Because of this, many ways have been found to work around the problems with drug transport through the lungs. Researchers have made polymeric microparticles (MP) and nanoparticles as a possible way to get drugs into the lungs.
View Article and Find Full Text PDFPolymers are a fundamental part of numerous industries and can be conjugated with many other materials and components to have a vast array of products. Biomaterials have been extensively studied for their application in pharmaceutical formulation development, tissue engineering, and biomedical areas. However, the native form of many polymers has limitations concerning microbial contamination, susceptibility, solubility, and stability.
View Article and Find Full Text PDFCurr Res Pharmacol Drug Discov
January 2023
The prevalence, incidence, and severity of a wide variety of diseases and ailments are significantly influenced by the significant disparities that occur between the sexes. The way that men and women react to pharmacological treatment also varies. Therefore, it is crucial to comprehend these reactions in order to conduct risk assessment correctly and to develop safe and efficient therapies.
View Article and Find Full Text PDFMolecules
November 2022
A brand-new nano-crystal (NC) version of the hydrophobic drug Paclitaxel (PT) were formulated for cancer treatment. A stable NC formulation for the administration of PT was created using the triblock co-polymer Pluronic F127. To achieve maximum entrapment effectiveness and minimal particle size, the formulation was improved using the central composite design by considering agitation speed and vacuum pressure at five levels (coded as +1.
View Article and Find Full Text PDFDiabetes mellitus is one of the most concerning conditions, and its chronic consequences are almost always accompanied by infection, oxidative stress, and inflammation. Reducing excessive reactive oxygen species and the wound's inflammatory response is a necessary treatment during the acute inflammatory phase of diabetic wound healing. extract (MS) containing nanofibers containing neomycin sulfate (NS) were synthesized for this investigation, and their impact on the healing process of diabetic wounds was assessed.
View Article and Find Full Text PDFCurrently, gastro-retentive dosage forms achieved a remarkable position among the oral drug delivery systems. This is a broadly used technique to hold the drug delivery systems for a long duration in the gastro intestine (GI) region, slow drug delivery, and overcome other challenges related to typical oral delivery such as low bioavailability. The current work aimed to formulate and characterize a new expandable gastro-retentive system through Itopride Hydrochloride (IH)’s unfolding process for controlled release.
View Article and Find Full Text PDFDiabetes mellitus (DM) and its complications are a severe public health concern due to the high incidence, morbidity, and mortality rates. The present study aims to synthesize and characterize silver nanoparticles (AgNPs) using the aqueous leaf extract of (PGE) for investigating its antidiabetic activity. silver nanoparticles (PGAg NPs) were prepared and characterized by various parameters.
View Article and Find Full Text PDFPulsatile drug delivery systems have drawn attention in contemporary research for designing chronotherapeutic systems. The current work aims to design pulsatile ketorolac tromethamine tablets using compression coating for delayed delivery with a lag time suitable for the treatment of morning stiffness in arthritis. Rapidly disintegrating core tablets of ketorolac tromethamine were formulated using super-disintegrants, and the optimized formulation was compression using PEO WSR coagulant and Eudragit RLPO for delaying the release.
View Article and Find Full Text PDFFor a few decades, globally, erectile dysfunction (ED) has become more prominent even in young adults and represents a mounting health concern causing a significant effect on men's quality of life. There is an expectation that by the end of 2025, the number of ED cases can rise to 322 million. We aimed to comprehensively analyze the scientific output of scholarly articles and studies in the field of ED (2016-2021).
View Article and Find Full Text PDFSignificant endeavors can be made to develop effective drug delivery systems. Nowadays, many of these novel systems have gained attention as they focus primarily on increasing the bioavailability and bioaccessibility of several drugs to finally minimize the side effects, thus improving the treatment's efficacy. Microfluidics systems are unquestionably a superior technology, which is currently revolutionizing the current chemical and biological studies, providing diminutive chip-scale devices that offer precise dosage, target-precise delivery, and controlled release.
View Article and Find Full Text PDFThe present work aimed to develop a chronotherapeutic system of valsartan (VS) using nanocrystal formulation to improve dissolution. VS nanocrystals (VS-NC) were fabricated using modified anti-solvent precipitation by employing a Box−Behnken design to optimize various process variables. Based on the desirability approach, a formulation containing 2.
View Article and Find Full Text PDF