Publications by authors named "Prakash Doddapattar"

Background: Obesity-induced hyperglycemia is a significant risk factor for stroke. Integrin α9β1 is expressed on neutrophils and stabilizes adhesion to the endothelium via ligands, including Fn-EDA (fibronectin containing extra domain A) and tenascin C. Although myeloid deletion of α9 reduces susceptibility to ischemic stroke, it is unclear whether this is mediated by neutrophil-derived α9.

View Article and Find Full Text PDF

Background: The glycolytic enzyme PKM2 (pyruvate kinase muscle 2) is upregulated in monocytes/macrophages of patients with atherosclerotic coronary artery disease. However, the role of cell type-specific PKM2 in the setting of atherosclerosis remains to be defined. We determined whether myeloid cell-specific PKM2 regulates efferocytosis and atherosclerosis.

View Article and Find Full Text PDF

There is a critical need for cerebro-protective interventions to improve the suboptimal outcomes of patients with ischemic stroke who have been treated with reperfusion strategies. We found that nuclear pyruvate kinase muscle 2 (PKM2), a modulator of systemic inflammation, was upregulated in neutrophils after the onset of ischemic stroke in both humans and mice. Therefore, we determined the role of PKM2 in stroke pathogenesis by using murine models with preexisting comorbidities.

View Article and Find Full Text PDF

Excessive proliferation of vascular smooth muscle cells (SMCs) remains a significant cause of in-stent restenosis. Integrins, which are heterodimeric transmembrane receptors, play a crucial role in SMC biology by binding to the extracellular matrix protein with the actin cytoskeleton within the SMC. Integrin α9 plays an important role in cell motility and autoimmune diseases; however, its role in SMC biology and remodeling remains unclear.

View Article and Find Full Text PDF

Background: Overweight and obesity are significant risk factors for deep vein thrombosis (DVT). Cellular fibronectin containing extra domain A (Fn-EDA), an endogenous ligand for toll-like-receptor 4 (TLR4), contributes to thrombo-inflammation. The role of Fn-EDA in the modulation of DVT is not elucidated yet.

View Article and Find Full Text PDF

Objective: The extracellular matrix of atherosclerotic arteries contains abundant deposits of cellular Fn-EDA (fibronectin containing extra domain A), suggesting a functional role in the pathophysiology of atherosclerosis. Fn-EDA is synthesized by several cell types, including endothelial cells (ECs) and smooth muscle cells (SMCs), which are known to contribute to different stages of atherosclerosis. Although previous studies using global Fn-EDA-deficient mice have demonstrated that Fn-EDA is proatherogenic, the cell-specific role of EC versus SMC-derived-Fn-EDA in atherosclerosis has not been investigated yet.

View Article and Find Full Text PDF

Rationale: Currently, there is no effective intervention available that can reduce brain damage following reperfusion. Clinical studies suggest a positive correlation between the increased influx of neutrophils and severity of brain injury following reperfusion. Integrin α9β1 is highly expressed on activated neutrophils and contributes to stable adhesion, but its role in stroke outcome has not been demonstrated to date.

View Article and Find Full Text PDF
Article Synopsis
  • Neutrophils may contribute to thrombosis through mechanisms like forming neutrophil extracellular traps (NETs), and high levels of integrin α9β1 on neutrophils enhance their adhesion to blood vessel linings during activation.
  • Researchers created mice lacking integrin α9 specifically in myeloid cells to explore its role in arterial thrombosis, finding that these mice were less prone to thrombosis without affecting normal blood clotting.
  • The study showed that neutrophils in the integrin α9-deficient mice exhibited reduced levels of inflammation markers and NET formation, and using an anti-integrin α9 antibody in regular mice also decreased thrombosis, highlighting integrin α9's potential as a therapeutic target.
View Article and Find Full Text PDF

Fibronectin-splice variant containing extra domain A (Fn-EDA) is associated with smooth muscle cells (SMCs) following vascular injury. The role of SMC-derived Fn-EDA in SMC phenotypic switching or its implication in neointimal hyperplasia remains unclear. Herein, using human coronary artery sections with a bare metal stent, we demonstrate the expression of Fn-EDA in the vicinity of SMC-rich neointima and peri-strut areas.

View Article and Find Full Text PDF

Background and Purpose- Cellular Fn-EDA (fibronectin containing extra domain A) is expressed in activated endothelial cells and elevated in circulation in patients with cardiovascular diseases. Although global deficiency of Fn-EDA in mice improves stroke outcome, the specific contribution of plasma versus endothelium Fn-EDA in stroke outcome is currently unknown. We investigated the role of plasma versus endothelial Fn-EDA in stroke exacerbation in the comorbid condition of hyperlipidemia.

View Article and Find Full Text PDF
Article Synopsis
  • Resting platelets depend on oxidative phosphorylation (OXPHOS) and aerobic glycolysis for energy, but when activated, they rely heavily on aerobic glycolysis, showing metabolic flexibility.
  • The study inhibited mitochondrial pyruvate dehydrogenase kinases (PDK 1-4) using dichloroacetic acid (DCA), resulting in reduced platelet activation and aggregation in response to various stimuli.
  • DCA pretreatment led to smaller thrombus formation in blood flow assays and reduced susceptibility to thrombosis in mouse models without impacting normal blood clotting, suggesting that modulating platelet metabolism could be a new way to control platelet function.
View Article and Find Full Text PDF

Background:  Fibronectin splicing variant containing extra domain A (Fn-EDA), which is an endogenous ligand for Toll-like receptor 4 (TLR4), is present in negligible amounts in the plasma of healthy humans, but markedly elevated in patients with co-morbid conditions including diabetes and hyperlipidaemia, which are risk factors for myocardial infarction (MI). Very little is known about the role of Fn-EDA in the pathophysiology of acute MI under these co-morbid conditions.

Materials And Methods:  We determined the role of Fn-EDA in myocardial ischaemia/reperfusion (I/R) injury in the hyperlipidaemic apolipoprotein E-deficient (ApoE) mice.

View Article and Find Full Text PDF

Background And Objective: A steep rise in the incidences of neurodegenerative disorders could be the combined effect of several non-genetic factors such as increased life expectancy, environmental pollutants, lifestyle, and dietary habits, as population-level genetic change require multiple generations. Emerging evidence suggests that chronic over-nutrition induces brain metabolic stress and neuroinflammation, and are individually known to promote neurodegenerative disorders including Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD). Although the association of metabolic disorders such as diabetes, hypertension, dyslipidemia, and atherosclerosis with the dietary habits is well known, neuronal implications of diet and nutritional factors is still in its infancy.

View Article and Find Full Text PDF

Objective: VWF (von Willebrand factor) is synthesized by endothelial cells and megakaryocytes and is known to contribute to atherosclerosis. In vitro studies suggest that platelet-derived VWF (Plt-VWF) is biochemically and functionally different from endothelial cell-derived VWF (EC-VWF). We determined the role of different pools of VWF in the pathophysiology of atherosclerosis.

View Article and Find Full Text PDF

Objective: Fibronectin containing extra domain A (Fn-EDA) is an endogenous ligand of TLR4 (toll-like receptor 4) and is abundant in the extracellular matrix of advanced atherosclerotic lesions in human and mice. Irrespective of sex, deletion of Fn-EDA reduces early atherosclerosis in apolipoprotein E-deficient (Apoe) mice. However, the contribution of Fn-EDA in advanced atherosclerosis remains poorly characterized.

View Article and Find Full Text PDF

Objective: ADAMTS13 (a disintegrin and metalloprotease with thrombospondin type I repeats-13) prevents microvascular thrombosis by cleaving prothrombogenic ultralarge von Willebrand factor (VWF) multimers. Clinical studies have found association between reduced ADAMTS13-specific activity, ultralarge VWF multimers, and thrombotic angiopathy in patients with diabetic nephropathy. It remains unknown, however, whether ADAMTS13 deficiency or ultralarge VWF multimers have a causative effect in diabetic nephropathy.

View Article and Find Full Text PDF

Objective: von Willebrand factor (VWF), which is synthesized in endothelial cells and megakaryocytes, is known to worsen stroke outcome. In vitro studies suggest that platelet-derived VWF (Plt-VWF) is biochemically different from the endothelial cell-derived VWF (EC-VWF). However, little is known about relative contribution of different pools of VWF in stroke.

View Article and Find Full Text PDF

Reperfusion injury can exacerbate tissue damage in ischemic stroke, but little is known about the mechanisms linking ROS to stroke severity. Here, we tested the hypothesis that protein methionine oxidation potentiates NF-κB activation and contributes to cerebral ischemia/reperfusion injury. We found that overexpression of methionine sulfoxide reductase A (MsrA), an antioxidant enzyme that reverses protein methionine oxidation, attenuated ROS-augmented NF-κB activation in endothelial cells, in part, by protecting against the oxidation of methionine residues in the regulatory domain of calcium/calmodulin-dependent protein kinase II (CaMKII).

View Article and Find Full Text PDF

Background And Aims: Monoglyceride lipase (MGL) catalyzes the final step of lipolysis by degrading monoglyceride (MG) to glycerol and fatty acid. MGL also hydrolyzes and thereby deactivates 2-arachidonoyl glycerol (2-AG), the most abundant endocannabinoid in the mammalian system. 2-AG acts as full agonist on cannabinoid receptor type 1 (CB1R) and CB2R, which are mainly expressed in brain and immune cells, respectively.

View Article and Find Full Text PDF

Background: The fibronectin-splicing variant containing extra domain A (Fn-EDA) is present in negligible amounts in the plasma of healthy humans but markedly elevated in patients with comorbid conditions, including diabetes mellitus and hypercholesterolemia, which are risk factors for stroke. It remains unknown, however, whether Fn-EDA worsens stroke outcomes in such conditions. We determined the role of Fn-EDA in stroke outcome in a model of hypercholesterolemia, the apolipoprotein E-deficient (Apoe(-/-)) mouse.

View Article and Find Full Text PDF

Objective: Emerging evidence suggests that methionine oxidation can directly affect protein function and may be linked to cardiovascular disease. The objective of this study was to define the role of the methionine sulfoxide reductase A (MsrA) in models of vascular disease and identify its signaling pathways.

Approach And Results: MsrA was readily identified in all layers of the vascular wall in human and murine arteries.

View Article and Find Full Text PDF

Objective: Cellular fibronectin containing extra domain A (EDA(+)-FN) is abundant in the arteries of patients with atherosclerosis. Several in vitro studies suggest that EDA(+)-FN interacts with Toll-like receptor 4 (TLR4). We tested the hypothesis that EDA(+)-FN exacerbates atherosclerosis through TLR4 in a clinically relevant model of atherosclerosis, the apolipoprotein E-deficient (Apoe(-/-)) mouse.

View Article and Find Full Text PDF

During autophagy, autophagosomes fuse with lysosomes to degrade damaged organelles and misfolded proteins. Breakdown products are released into the cytosol and contribute to energy and metabolic building block supply, especially during starvation. Lipophagy has been defined as the autophagy-mediated degradation of lipid droplets (LDs) by lysosomal acid lipase.

View Article and Find Full Text PDF

Scope: Xanthohumol (XN), a prenylated antioxidative and anti-inflammatory chalcone from hops, exhibits positive effects on lipid and glucose metabolism. Based on its favorable biological properties, we investigated whether XN attenuates atherosclerosis in western-type diet-fed apolipoprotein-E-deficient (ApoE⁻/⁻) mice.

Methods And Results: XN supplementation markedly reduced plasma cholesterol concentrations, decreased atherosclerotic lesion area, and attenuated plasma concentrations of the proinflammatory cytokine monocyte chemoattractant protein 1.

View Article and Find Full Text PDF