Impaired respiratory motor output contributes to morbidity and mortality in many neurodegenerative diseases and neurologic injuries. We investigated if expressing designer receptors exclusively activated by designer drugs (DREADDs) in the mid-cervical spinal cord could effectively stimulate phrenic motor output to increase diaphragm activation. Two primary questions were addressed: 1) does effective DREADD-mediated diaphragm activation require focal expression in phrenic motoneurons (vs.
View Article and Find Full Text PDFAmpakines are positive allosteric modulators of AMPA receptors. We hypothesized that low-dose ampakine treatment increases diaphragm electromyogram (EMG) activity after mid-cervical contusion injury in rats. Adult male and female Sprague Dawley rats were implanted with in-dwelling bilateral diaphragm EMG electrodes.
View Article and Find Full Text PDFRepeated hypoxic episodes can produce a sustained (>60 min) increase in neural drive to the diaphragm. The requirement of repeated hypoxic episodes (vs. a single episode) to produce phrenic motor facilitation (pMF) can be removed by allosteric modulation of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors using ampakines.
View Article and Find Full Text PDFPhrenic motoneurons (PhrMNs) innervate diaphragm myofibers. Located in the ventral gray matter (lamina IX), PhrMNs form a column extending from approximately the third to sixth cervical spinal segment. Phrenic motor output and diaphragm activation are impaired in many neuromuscular diseases, and targeted delivery of drugs and/or genetic material to PhrMNs may have therapeutic application.
View Article and Find Full Text PDFRespir Physiol Neurobiol
February 2022
Ampakines are synthetic molecules that allosterically modulate AMPA-type glutamate receptors. We tested the hypothesis that delivery of ampakines to the intrathecal space could stimulate neural drive to the diaphragm. Ampakine CX717 (20 mM, dissolved in 10 % HPCD) or an HPCD vehicle solution were delivered via a catheter placed in the intrathecal space at the fourth cervical segment in urethane-anesthetized, mechanically ventilated adult male Sprague-Dawley rats.
View Article and Find Full Text PDFRepeated short episodes of hypoxia produce a sustained increase in phrenic nerve output lasting well beyond acute intermittent hypoxia (AIH) exposure (i.e., phrenic long-term facilitation; pLTF).
View Article and Find Full Text PDFWe investigated effects of the neuroactive steroid anesthetic alfaxalone on intrinsic excitability, and on inhibitory and excitatory synaptic transmission to hypoglossal motor neurons (HMNs). Whole cell recordings were made from HMNs in brainstem slices from 7 to 14-day-old Wistar rats. Spontaneous, miniature, and evoked inhibitory post-synaptic currents (IPSCs), and spontaneous and evoked excitatory PSCs (EPSCs) were recorded at -60 mV.
View Article and Find Full Text PDFThe effect of capsaicin on glycinergic synaptic transmission to juvenile rat hypoglossal motor neurons in acute brainstem slices was evaluated in the presence of TTX. Capsaicin caused a robust decrease in miniature IPSC frequency, amplitude, and half-width, showing that this effect is independent of action potential generation. In the presence of capsazepine, a classic TRPV1 antagonist, capsaicin was still able to reduce spontaneous inhibitory postsynaptic current (IPSC) amplitude and frequency.
View Article and Find Full Text PDFWe investigated whether capsaicin modulated synaptic transmission to hypoglossal motor neurons (HMNs) by acting on transient receptor potential vanilloid type 1 (TRPV1) receptors. Using whole-cell patch clamp recording from neonatal rat HMNs, we found that capsaicin increased spontaneous excitatory post-synaptic current (sEPSC) frequency and amplitude. Interestingly, the only effect of capsaicin on spontaneous inhibitory post-synaptic currents (sIPSCs) was a significant decrease in sIPSC amplitude without altering frequency, indicating a post-synaptic mechanism of action.
View Article and Find Full Text PDFAgmatine is a cationic amine formed by decarboxylation of l-arginine by the mitochondrial enzyme arginine decarboxylase and widely distributed in mammalian brain. Although the precise function of endogenous agmatine has been largely remained unclear, its exogenous administration demonstrated beneficial effects in several neurological and psychiatric disorders. This study was planned to examine the role of imidazoline binding sites in the anticompulsive-like effect of agmatine on marble-burying behavior.
View Article and Find Full Text PDFAvoidance of the nicotine withdrawal syndrome as well as the positive subjective effects of nicotine is the major predisposing factor to motivate nicotine abuse. However, its underlying neurobehavioral mechanisms remain perplexing. In the present study, we investigated the influence of the neurosteroid allopregnanolone (ALLO; 0.
View Article and Find Full Text PDF