The setback in the practical clinical use of RNA interference (RNAi)-based cancer treatment stems from the lack of targeted small interfering RNA (siRNA) delivery. Here, we show that luteinizing hormone-releasing hormone(LHRH) analog-tethered multi-layered polyamidoamine (PAMAM) nanoconstructs silence the anti-apoptotic MCL-1 gene in LHRH receptor overexpressing human breast (MCF-7) and prostate cancer (LNCaP) cells with 70.91 % and 74.
View Article and Find Full Text PDFViral infections can cause fatal illnesses to humans as well as animals. Early detection of viruses is therefore crucial to provide effective treatment to patients. Recently, the Covid-19 pandemic has undoubtedly given an alarming call to develop rapid and sensitive detection platforms.
View Article and Find Full Text PDFRadiotherapy (RT) is a primary treatment modality for a number of cancers, offering potentially curative outcomes. Despite its success, tumour can become resistant to RT, leading to disease recurrence. Components of the tumour microenvironment (TME) likely play an integral role in managing RT success or failure including infiltrating immune , the tumour vasculature and stroma.
View Article and Find Full Text PDFThe current study dealt with the synthesis and characterization of carboxymethyl fenugreek galactomannang-g-poly(N-isopropylacrylamide-co-N,N'-methylene-bis-acrylamide)-bentonite [CFG-g-P(NIPA-co-MBA)-BEN] based nanocomposites (NCs) as erlotinib (ERL)-delivery devices for lung cancer cells to suppress excessive cell proliferation. The blank NCs exhibited outstanding biodegradability and pH/temperature-dependent swelling profiles, which were significantly influenced by their BEN contents (0-20%). The molar mass (M¯c) between the crosslinks of these NCs was declined with temperature.
View Article and Find Full Text PDFErlotinib-loaded carboxymethyl temarind gum-g-poly(N-isopropylacrylamide)-montmorillonite based semi-IPN nanocomposites were synthesized and characterized for their in vitro performances for lung cancer therapy. The placebo matrices exhibited outstanding biodegradability and pH-dependent swelling profiles. The molar mass (M¯ c) between the crosslinks of these composites was declined with temperature.
View Article and Find Full Text PDFMyocardial infarction is a tissue injury that leads to apoptosis of cardiomyocytes. This can be prevented by using miRNAs, but its delivery to cardiomyocytes is a major hurdle. We aimed to deliver miRNAs using poly(amidoamine)-histidine (PAMAM-His) nanocarriers to prevent apoptosis.
View Article and Find Full Text PDFRecent interest in triblock dendritic unimolecular micelles has opened a new spectrum for its ubiquitous application in biomedical sciences specially drug delivery. Unimolecular dendritic micelles have brought significant attention due to their high encapsulation efficiency, high-functionality, and site specific confinement capabilities. During the last decade, the number of publications in this field has increased drastically, reinforced by the fact that several clinical trials are underway using micelles for drug delivery.
View Article and Find Full Text PDFBackground: Considering the increase in cancer cases and number of deaths per year worldwide, development of potential therapeutics is imperative. Mesoporous silica nanoparticles (MSNPs) are among the potential nanocarriers having unique properties for drug delivery. Doxorubicin (DOX), being the most commonly used drug, can be efficiently delivered to gonadotropin-releasing hormone (GnRH)-overexpressing cancer cells using functionalized MSNPs.
View Article and Find Full Text PDFLarge surface area, uniform and tunable pore size, high pore volume and low mass density- such attractive features of Mesoporous silica nanoparticles (MSNPs) have compelled researchers to explore the biomedical potential of this nano-material. Recently gained interest in MSNPs have been due to their tremendous potential in cancer therapy and imaging. Last several years have witnessed a rapid development in engineering functionalized MSNPs with various types of functional groups integrated into the system for imaging and therapeutic applications.
View Article and Find Full Text PDFCancer treatment using siRNA based therapies pose various limitations such as off-target effects and degradation due to lack of specific delivery in desired cells. The aim of the present study was to develop multifunctional targeted nanoconstructs, which can efficiently and precisely deliver siRNA and silence the desired gene of interest in various LHRH overexpressing cancer cells. Herein, we report the development of triblock, PAMAM-histidine-PEG dendritic nanoconstructs functionalized with triptorelin (an LHRH analog) for targeted siRNA delivery to LHRH overexpressing breast (MCF-7) and prostate (LNCaP) cancer cells.
View Article and Find Full Text PDFFolate receptors (FR) have been well recognized as a marker to target nano-sized carriers for cancer diagnosis and therapy. In contrast, influx transport systems (e.g.
View Article and Find Full Text PDF