Background: Acute kidney injury (AKI) considerably increases the risk of short-term mortality in acute-on-chronic liver failure (ACLF) but predicting AKI is not possible with existing tools. Our study aimed at discovery of AKI biomarkers in ACLF.
Methods: This observational study had two phases- (A) Discovery phase in which quantitative proteomics was carried-out with day-of-admission plasma from ACLF patients who initially had no-AKI but either progressed to AKI (n=10) or did not (n=9) within 7 days of admission and, (B) Validation phase in which selected biomarkers from the discovery phase were validated by ELISA in a larger set of ACLF plasma samples (n=93) followed by sub-group analyses.
Acute-on-Chronic Liver Failure (ACLF) is associated with innate immune dysfunction and high short-term mortality. Neutrophils have been identified to influence prognosis in ACLF. Neutrophil biology is under-evaluated in ACLF.
View Article and Find Full Text PDFThe liver is a central organ in the human body, coordinating several key metabolic roles. The structure of the liver which consists of the distinctive arrangement of hepatocytes, hepatic sinusoids, the hepatic artery, portal vein and the central vein, is critical for its function. Due to its unique position in the human body, the liver interacts with components of circulation targeted for the rest of the body and in the process, it is exposed to a vast array of external agents such as dietary metabolites and compounds absorbed through the intestine, including alcohol and drugs, as well as pathogens.
View Article and Find Full Text PDFIndian J Gastroenterol
June 2020
Background And Aim: There is a paucity of data on the clinical presentations and outcomes of Corona Virus Disease-19 (COVID-19) in patients with underlying liver disease. We aimed to summarize the presentations and outcomes of COVID-19-positive patients and compare with historical controls.
Methods: Patients with known chronic liver disease who presented with superimposed COVID-19 (n = 28) between 22 April 2020 and 22 June 2020 were studied.
Plasmodium infections are co-endemic with infections caused by other agents of acute febrile illnesses, such as dengue virus (DENV), chikungunya virus, Leptospira spp., and Orientia tsutsugamushi. However, co-infections may influence disease severity, treatment outcomes, and development of drug resistance.
View Article and Find Full Text PDFObjective: Acute kidney injury (AKI) is a frequent presentation in malaria infections. Several cases of AKI that are accompanied by clinical symptoms of malaria infection, such as fever, nausea, respiratory distress, and anemia remain undiagnosed due to challenges in accurate diagnosis using peripheral blood microscopy and rapid diagnostic tests that are currently used in clinical settings. This is particularly true for P.
View Article and Find Full Text PDFOnce thought to be uncommon, celiac disease has now become a common disease globally. While avoidance of the gluten-containing diet is the only effective treatment so far, many new targets are being explored for the development of new drugs for its treatment. The endpoints of therapy include not only reversal of symptoms, normalization of immunological abnormalities and healing of mucosa, but also maintenance of remission of the disease by strict adherence of the gluten-free diet (GFD).
View Article and Find Full Text PDFIntroduction: Celiac disease (CeD) is an autoimmune enteropathy which affects approximately 0.7% of the global population. While first-degree relatives (FDR) of patients with CeD have a 7.
View Article and Find Full Text PDFPurpose: The cell membrane of the erythrocytes infected with the malaria parasite Plasmodium falciparum undergoes several changes during the course of parasite life cycle and forms protrusions known as 'knobs' on its surface during the mature trophozoite and schizont stages. The structural organization of knob components especially PfEMP1 on the iRBC surface is the main determinant for the cytoadhesive and rosetting capacity of the iRBC by binding to various host receptors as well as for the variable antigenicity, which is crucial for immunoevasion. Although several studies report individual interactions among knob constituents, a comprehensive identification of the knob proteome is lacking.
View Article and Find Full Text PDFThe malaria parasite, , is one of the oldest parasites documented to infect humans and has proven particularly hard to eradicate. One of the major hurdles in designing an effective subunit vaccine against the malaria parasite is the insufficient understanding of host-parasite interactions within the human host during infections. The success of the parasite lies in its ability to evade the human immune system and recruit host responses as physiological cues to regulate its life cycle, leading to rapid acclimatization of the parasite to its immediate host environment.
View Article and Find Full Text PDFCell surface structures termed knobs are one of the most important pathogenesis related protein complexes deployed by the malaria parasite Plasmodium falciparum at the surface of the infected erythrocyte. Despite their relevance to the disease, their structure, mechanisms of traffic and their process of assembly remain poorly understood. In this study, we have explored the possible role of a parasite-encoded Hsp40 class of chaperone, namely PFB0090c/PF3D7_0201800 (KAHsp40) in protein trafficking in the infected erythrocyte.
View Article and Find Full Text PDFRecent reports highlight the severity and the morbidity of disease caused by the long neglected malaria parasite Plasmodium vivax. Due to inherent difficulties in the laboratory-propagation of P. vivax, the biology of this parasite has not been adequately explored.
View Article and Find Full Text PDFMalaria causes a worldwide annual mortality of about a million people. Rapidly evolving drug-resistant species of the parasite have created a pressing need for the identification of new drug targets and vaccine candidates. By developing fractionation protocols to enrich parasites from low-parasitemia patient samples, we have carried out the first ever proteomics analysis of clinical isolates of early stages of Plasmodium falciparum (Pf) and P.
View Article and Find Full Text PDFBackground: Molecular chaperones have been shown to be important in the growth of the malaria parasite Plasmodium falciparum and inhibition of chaperone function by pharmacological agents has been shown to abrogate parasite growth. A recent study has demonstrated that clinical isolates of the parasite have distinct physiological states, one of which resembles environmental stress response showing up-regulation of specific molecular chaperones.
Methods: Chaperone networks operational in the distinct physiological clusters in clinical malaria parasites were constructed using cytoscape by utilizing their clinical expression profiles.
Human cerebral malaria is caused by the protozoan parasite Plasmodium falciparum, which establishes itself within erythrocytes. The normal body temperature in the human host could constitute a possible source of heat stress to the parasite. Molecular chaperones belonging to the heat shock protein (Hsp) class are thought to be important for parasite subsistence in the host cell, as the expression of some members of this family has been reported to increase upon heat shock.
View Article and Find Full Text PDFMol Biochem Parasitol
June 2007
In addition to their ability to help newly synthesized proteins to fold, molecular chaperones are also recognized for their participation in cellular processes ranging from protein trafficking, signal transduction, differentiation and development. Novel roles for this group of proteins have come to light through studies on important human pathogens like Leishmania, Trypanosoma as well as Plasmodia species. This review analyzes our current state of knowledge on molecular chaperones in human malarial parasite Plasmodium falciparum.
View Article and Find Full Text PDF