Publications by authors named "Pragya Pallavi"

Introduction: As cancer therapy progresses, challenges remain due to the inherent drawbacks of conventional treatments such as chemotherapy, gene therapy, radiation therapy, and surgical removal. Moreover, due to their associated side effects, conventional treatments affect both cancerous and normal cells, making photodynamic therapy (PDT) an attractive alternative.

Methods: As a result of its minimal toxicity, exceptional specificity, and non-invasive characteristics, PDT represents an innovative and highly promising cancer treatment strategy using photosensitizers (PSs) and precise wavelength excitation light to introduce reactive oxygen species (ROS) in the vicinity of cancer cells.

View Article and Find Full Text PDF

Despite the wide range of treatment options available for cancer therapy, including chemotherapy, radiation therapy, and surgical procedures, each of these treatments has a different side-effect profile and leaves the patient with no option but to choose. Due to their insensitivity and nonspecificity, conventional treatments damage normal cells together with cancer cells. In recent years, a significant amount of attention has been focused on photodynamic therapy (PDT) as a treatment for cancer and drug-resistant microbes.

View Article and Find Full Text PDF

Background And Purpose: Many sectors use nanoparticles and dispose of them in the aquatic environment without deciding the fate of these particles.

Experimental Approach: To identify a benign species of nanoparticles which can cause minimum harm to the aquatic environment, a comparative study was done with chemically synthesized silver nanoparticles (AgNPs) and green tea mediated synthesis (GT/AgNP) in both in vitro using human alveolar cancer cell line (A549) and normal cell line (L132), and in in vivo with zebrafish embryos.

Key Results: The in vitro studies revealed that GT/AgNPs were less toxic to normal cells than cancer cells.

View Article and Find Full Text PDF

The matrix metalloproteinases (MMPs) inhibit tissue inhibitors of metalloproteinases (TIMPs), playing a notable role in various biological processes, and mutations in genes impact a variety of urinary cancers. In this study, we analyze and evaluate the potential involvement of the 418 G/C and MMP gene polymorphism in the etiology of urinary cancer. For suitable case-control studies, a literature search was undertaken from various database sources such as PubMed, EMBASE, and Google Scholar.

View Article and Find Full Text PDF

It is evident that site-specific systemic drug delivery can reduce side effects, systemic toxicity, and minimal dosage requirements predominantly by delivering drugs to particular pathological sites, cells, and even subcellular structures. The endoplasmic reticulum (ER) and associated cell organelles play a vital role in several essential cellular functions and activities, such as the synthesis of lipids, steroids, membrane-associated proteins along with intracellular transport, signaling of Ca, and specific response to stress. Therefore, the dysfunction of ER is correlated with numerous diseases where cancer, neurodegenerative disorders, diabetes mellitus, hepatic disorder, etc.

View Article and Find Full Text PDF

Background And Purpose: The pandemic of COVID-19 has highlighted the need for managing infectious diseases, which spreads by airborne transmission leading to serious health, social, and economic issues. SARS-CoV-2 is an enveloped virus with a 60-140 nm diameter and particle-like features, which majorly accounts for this disease. Expanding diagnostic capabilities, developing safe vaccinations with long-lasting immunity, and formulating effective medications are the strategies to be investigated.

View Article and Find Full Text PDF

Background And Purpose: Modern technologies are making advanced paths to address emerging issues. The development of carbon dots (CDs) technology at a tiny level has been researched to have made impeccable strides in advancing the modern scientific field, especially in nanomedicine.

Experimental Approach: Researchers have gained much attention on CDs of their unique properties in the synthesis, easy surface modifications, excellent optical properties, low toxicity, and water solubility.

View Article and Find Full Text PDF

One of the primary threats in tumor treatment revolves around the limited ability to penetrate tumor sites, leading to reduced therapeutic effectiveness, which remains a critical concern. Recently gaining importance are novel peptides, namely CRGDK/RGPD/EC (iRGD), that possess enhanced tumor-penetrating and inhibitory properties. These peptides specifically target and penetrate tumors by binding to αvβ integrins, namely αvβ3 and αvβ5, as well as NRP-1 receptors.

View Article and Find Full Text PDF

Conventional chemotherapeutic drugs are used for cancer management, but recently nanoparticles have also been shown to contribute towards controlling cancer cell proliferation. In the present study, we focussed on analyzing the combinatorial effect of Cerium oxide (CeO) nanoparticles and Doxorubicin (Dox) on melanoma cancer cells in vitro and in vivo. We entrapped CeO, Dox, and CeO+Dox in a hybrid polymer matrix of alginate and chitosan (Alg-Cs) and used them in both in vitro and in vivo studies to compare their anticancer effect.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) has recently become significant as a clinical modality for cancer therapy and multidrug-resistant (MDR) infections, replacing conventional chemotherapy and radiation therapy protocols. PDT involves the excitation of certain nontoxic molecules called photosensitizers (PS), applying a specific wavelength of light to generate reactive oxygen species (ROS) to treat cancer cells and other pathogens. Rhodamine 6G (R6G) is a well-known laser dye with poor aqueous solubility, and lower sensitivity poses an issue in using PS for PDT.

View Article and Find Full Text PDF

Carbon-decorated ferrite nanodots (MNF@Cs) have been enhanced with superparamagnetism and higher fluorescence quantum yield by encapsulation with an alginate derivative to create a cost-effective and less toxic multimodal contrast agent for replacing the conventional heavy metal Gd-containing contrast agent used in MR imaging. The novel surface-engineered particles (MNF@C-OSAs), devoid of labels, can simultaneously provide both longitudinal and transverse relaxation-based magnetic resonance imaging (MRI) and fluorescence emission. According to the findings of in vitro studies, the calculated molar relaxivities and the molar radiant efficiencies are indicative of the multimodal efficacy of MNF@C-OSA as compared with MNF@C particles and conventional contrast agents used in medical imaging.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) is a well-known remedial treatment for cancer, infections, and various other diseases. PDT uses nontoxic dyes called photosensitizers (PS) that are activated in visible light at the proper wavelength to generate ROS (reactive oxygen species) that aid in killing tumor cells and destroying pathogenic microbes. Deciding a suitable photosensitizer is essential for enhancing the effectiveness of photodynamic therapy.

View Article and Find Full Text PDF