Objective: The current research investigated whether professional musicians outperformed non-musicians on auditory processing and speech-in-noise perception as assessed using behavioural and electrophysiological tasks.
Design: Spectro-temporal processing skills were assessed using a psychoacoustic test battery. Speech-in-noise perception was measured using the Listening in Spatialised Noise - Sentences (LiSN-S) test and Cortical Auditory Evoked Potentials (CAEPs) recorded to the speech syllable/da/presented in quiet and in 8-talker babble noise at 0, 5, and 10 dB signal-to-noise ratios (SNRs).
Objectives: Identification and discrimination of speech sounds in noisy environments is challenging for adults and even more so for infants and children. Behavioral studies consistently report maturational differences in the influence that signal to noise ratio (SNR) and masker type have on speech processing; however, few studies have investigated the neural mechanisms underlying these differences at the level of the auditory cortex. In the present study, we investigated the effect of different SNRs on speech-evoked cortical auditory-evoked potentials (CAEPs) in infants and adults with normal hearing.
View Article and Find Full Text PDFObjective: The question whether musical training is associated with enhanced auditory and cognitive abilities in children is of considerable interest. In the present study, we compared children with music training versus those without music training across a range of auditory and cognitive measures, including the ability to detect implicitly statistical regularities in input (statistical learning).
Methods: Statistical learning of regularities embedded in auditory and visual stimuli was measured in musically trained and age-matched untrained children between the ages of 9-11years.
It has been hypothesized that musical expertise is associated with enhanced auditory processing and cognitive abilities. Recent research has examined the relationship between musicians' advantage and implicit statistical learning skills. In the present study, we assessed a variety of auditory processing skills, cognitive processing skills, and statistical learning (auditory and visual forms) in age-matched musicians (N = 17) and non-musicians (N = 18).
View Article and Find Full Text PDF