Publications by authors named "Pragati Nahar"

Periodontal surgery is required to access the root surfaces in order to debride them of dental plaque and calculus, promote pocket reduction, create healthy bone architecture, and provide patients greater access to out-of-reach areas to maintain oral hygiene. The use of adjunctive agents and materials-enamel matrix derivatives, low-laser treatment, ozone, locally administered minocycline HCL, doxycycline gels, tetracycline fibers, chlorhexidine chips, granular beta-tricalcium phosphate, and hyaluronic acid, and the like-have been reported to improve pocket depth reduction, periodontal ligament healing, bone defect filling, and mechanical debridement during guided tissue regeneration/flap surgeries. However, the efficacy and benefits of these adjuvants compared to periodontal surgery alone is still widely debated.

View Article and Find Full Text PDF

A combination of calorie restriction (CR), dietary modification, and exercise is the recommended therapy to reverse obesity and nonalcoholic fatty liver disease. In the liver, CR shifts hepatic metabolism from lipid storage to lipid utilization pathways, such as AMP-activated protein kinase (AMPK). Perfluorooctanesulfonic acid (PFOS), a fluorosurfactant previously used in stain repellents and anti-stick materials, can increase hepatic lipids in mice following relatively low-dose exposures.

View Article and Find Full Text PDF

Objectives: Urolithins, ellagitannin-gut microbial-derived metabolites, have been reported to mediate pomegranate's neuroprotective effects against Alzheimer's disease (AD), but there are limited data on their effects against neuroinflammation. Herein, we: (1) evaluated whether urolithins (urolithins A and B and their methylated derivatives) attenuate neuroinflammation in murine BV-2 microglia and human SH-SY5Y neurons, and (2) evaluated hippocampus of transgenic AD (R1.40) mice administered a pomegranate extract (PE; 100 or 200 mg/kg/day for 3 weeks) for inflammatory biomarkers.

View Article and Find Full Text PDF

Published data supports the neuroprotective effects of several phenolic-containing natural products, including certain fruit, berries, spices, nuts, green tea, and olive oil. However, limited data are available for phenolic-containing plant-derived natural sweeteners including maple syrup. Herein, we investigated the neuroprotective effects of a chemically standardized phenolic-enriched maple syrup extract (MSX) using a combination of biophysical, in vitro, and in vivo studies.

View Article and Find Full Text PDF

Inflammation and the presence of pro-inflammatory cytokines are associated with numerous chronic diseases such as type-2 diabetes mellitus, cardiovascular disease, Alzheimer's disease, and cancer. An overwhelming amount of data indicates that curcumin, a polyphenol obtained from the Indian spice turmeric, Curcuma longa, is a potential chemopreventive agent for treating certain cancers and other chronic inflammatory diseases. However, the low bioavailability of curcumin, partly due to its low solubility and stability in the digestive tract, limits its therapeutic applications.

View Article and Find Full Text PDF

Six rare naturally occurring indazole-type alkaloids including two new compounds, 17-O-(β-d-glucopyranosyl)-4-O-methylnigellidine (1) and nigelanoid (2), and four known compounds (3-6) were isolated from a defatted extract of Nigella sativa (black cumin) seeds. 17-O-(β-d-Glucopyranosyl)-4-O-methylnigellidine (1) increased glucose consumption by liver hepatocytes (HepG2 cells) through activation of AMP-activated protein kinase (AMPK). Also, this is the first report of compounds 4 and 6 from a natural source.

View Article and Find Full Text PDF

Maple syrup has nutraceutical potential given the macronutrients (carbohydrates, primarily sucrose), micronutrients (minerals and vitamins), and phytochemicals (primarily phenolics) found in this natural sweetener. We conducted compositional (ash, fiber, carbohydrates, minerals, amino acids, organic acids, vitamins, phytochemicals), in vitro biological, and in vivo safety (animal toxicity) studies on maple syrup extracts (MSX-1 and MSX-2) derived from two declassified maple syrup samples. Along with macronutrient and micronutrient quantification, thirty-three phytochemicals were identified (by HPLC-DAD), and nine phytochemicals, including two new compounds, were isolated and identified (by NMR) from MSX.

View Article and Find Full Text PDF