A Ni-catalyzed C-N bond activation of 2-pyridylpyridone and 1-(9-alkyl 9-purin-6-yl)pyridin-2(1)-one and coupling with arylboronic acid have been achieved. A unique feature of this reaction is the strategic activation of the bridging C-N bond and replacement of the pyridone unit with aryl groups using nickel catalyzed Suzuki-Miyaura coupling. This provides an exciting new tool to build C-C bonds in the place of pyridones.
View Article and Find Full Text PDFA rhodium-catalyzed oxidative C-H/N-H dehydrogenative [3 + 2] annulation strategy has been reported between anilines and -allylbenzimidazole for the synthesis of 2-methylindole scaffolds. An -allylbenzimidazole has been used as a 2C synthon for the synthesis of indole, and more importantly, this transformation involves the cleavage of the thermodynamically stable C-N bond of allylamine. Detailed mechanistic studies have been performed and a key intermediate was detected in HRMS.
View Article and Find Full Text PDFA Rh-catalyzed C(sp)-H propenylation has been reported by taking -allyl benzimidazole as an allylamine congener. This transformation has been observed for the first time, where a tandem process of C-H allylation followed by alkene isomerization delivers a highly stereoselective -propenylated product. Detailed mechanistic studies including the characterization of rhodacycle-intermediates have been conducted to understand the mechanism.
View Article and Find Full Text PDFWe report herein a cobalt-catalyzed 8-aminoquinoline-directed highly regio- and stereoselective C-H/N-H activation annulation of indole-2-carboxamides with 1,2-dihydronaphthalene for the synthesis of β-carboline-1-one derivatives at room temperature. A cheaper and commercially available cobalt catalyst has been used for this transformation. The protocol tolerates a wide range of functionalities, affording β-carboline-1-one derivatives in good yields.
View Article and Find Full Text PDFCo(III)-catalyzed alkenylation of 2-pyridones by using terminal alkyne as a reaction partner with high regioselectivity has been demonstrated for the first time. The reaction conditions are mild and compatible with a wide range of substrate combinations. It also shows good functional group tolerance.
View Article and Find Full Text PDFThis review focuses on providing comprehensive highlights of the recent advances in the field of cobalt-catalysed C-H functionalization and related synthetic concepts, relying on these through oxygen atom coordination. In recent years, 3d transition metal (Fe, Co, Cu & Ni) catalysed C-H functionalization reactions have received immense attention on account of its higher abundance and low cost, as compared to noble metals such as Ir, Rh, Ru and Pd. Among the first-row transition metals, cobalt is one of the extensively used metals for sustainable synthesis due to its unique reactivity towards the functionalization of inert C-H bonds.
View Article and Find Full Text PDFStrain-driven palladium/-heterocyclic carbene-catalyzed C-C bond activation of diphenylcyclopropenone (DPC) has been explored for one-step access to trisubstituted α,β-unsaturated esters and amides. The designed transformation works under mild conditions providing exclusively a single stereoisomer. Mechanistic studies support the oxidative addition of the C-C bond of cyclopropenone to in-situ-generated Pd(0) intermediate.
View Article and Find Full Text PDFA Rh-catalyzed pot and step economic synthesis of aza-polycyclic aromatic hydrocarbons (N-PAHs) from readily available aryl ketones and alkynes has been disclosed. Additionally, a novel synthetic application of the well-known aminating reagent hydroxylamine--sulfonic acid (HOSA) has been explored as an in situ redox-neutral directing group for the formation of N-PAHs via isoquinoline. Multiple bond formation in a single operation through a cascade of triple C-H bond activations is the beauty of this protocol.
View Article and Find Full Text PDFA new strategy for the C(7)-H functionalization of indoline derivatives using first-row transition-metal cobalt has been demonstrated wherein the pivaloyl group acts as a weakly coordinating directing group. Biologically important pyroquilon (tetrahydropyroquinolinone) derivatives have been synthesized in a one-pot manner through selective C(7)-H functionalization and concomitant cyclization. In this process, aromatic C-H and amidic C-N bonds are cleaved, and new C-C and C-N bonds are formed in a step-economical fashion.
View Article and Find Full Text PDF