This study aims to investigate the physical stability, droplet size, zeta potential, and antimicrobial properties of nanoemulsions formulated with betel leaf extract using β-cyclodextrin (CD) and sodium alginate (SA) biopolymers. Nanoemulsions with β-cyclodextrin exhibit superior stability at lower temperatures, with limited droplet size, and strong electrostatic repulsion. Morphological images demonstrate the successful encapsulation of betel leaf extract within both biopolymers, highlighting their potential for antimicrobial applications.
View Article and Find Full Text PDFDeveloping an edible and active coating, incorporating environmentally-friendly antimicrobial agents into edible polymers, provides an eco-friendly alternative to conventional packaging and exhibits significant potential in preserving the quality of postharvest food. Herein, we aim to develop a novel edible and active coating based on xanthan gum (XG) nanoemulsion (NE) incorporating betel leaf extract (BLE) for the preservation of fresh produce. The total phenolic content, total flavonoid content, and antioxidant capacity of the methanol extract of BLE at various concentrations were characterized.
View Article and Find Full Text PDFThe nanoparticles for the preparation of nanocomposite starch films were synthesized from potato starch using the acid hydrolysis method. The films were prepared by incorporating starch nanoparticles into the film formulation at 0.5, 1, 2, 5, and 10% level of total starch.
View Article and Find Full Text PDFIn recent years, interdisciplinary research is more focused on particle size, which helps in exploring the relation between micro and macroscopic properties of various materials. Starch nanoparticles are generally synthesized by using acid/enzymatic hydrolysis, gamma irradiation, simple nanoprecipitation, ultra-sonication, and homogenization treatments. The properties like amylose content, pasting, rheological, morphological, size distribution, etc.
View Article and Find Full Text PDFThis study was aimed to synthesize and evaluate the nano starch-based composite films by the addition of nano starch in film formulation at 0.5, 1, 2, 5 and 10% level of total starch. The acid hydrolysis technique was used to reduce the size of starch granules of kidney bean starch.
View Article and Find Full Text PDF