The nutritional requirements for human induced pluripotent stem cell (hiPSC) growth have not been extensively studied. Here, building on our prior work that established the suitable non-basal medium components for hiPSC growth, we develop a simplified basal medium consisting of just 39 components, demonstrating that many ingredients of DMEM/F12 are either not essential or are at suboptimal concentrations. This new basal medium along with the supplement, which we call BMEM, enhances the growth rate of hiPSCs over DMEM/F12-based media, supports derivation of multiple hiPSC lines, and allows differentiation to multiple lineages.
View Article and Find Full Text PDFLoeys-Dietz syndrome (LDS) is a rare connective tissue disorder characterized by a genetic predisposition for thoracic aortic aneurysm and dissection. Despite heterozygous loss-of-function mutations in genes for ligand, receptor, or downstream mediators of the transforming growth factor β (TGFβ) pathway, LDS is associated with a signature of high TGFβ signaling. We generated induced pluripotent stem cell (iPSC) lines from three adult LDS-patients (two male, one female) of a family with a heterozygous point mutation in exon 4 of the TGFβ-receptor1 (TGFBR1) gene (p.
View Article and Find Full Text PDFTumor protein p63 (p63) encodes for a transcription factor of the p53 family and is a marker for respiratory basal cells. Based on a NKX2.1 knock-in reporter cell line from human induced pluripotent stem cells (hiPSCs) (MHHi06-A-2) we established a NKX2.
View Article and Find Full Text PDF