Chemolithotrophic oxidation of reduced sulfur compounds was studied in the betaproteobacterium Tetrathiobacter kashmirensis in correlation with its transposon (Tn5-mob)-inserted mutants impaired in sulfur oxidation (Sox(-)) and found to be carried out via the tetrathionate intermediate (S(4)I) pathway. The group of physiologically identical Sox(-) mutant strains presently examined could fully oxidize thiosulfate supplied in the media to equivalent amounts of tetrathionate but could only convert 5-10% of the latter to equivalent amounts of sulfite (equivalences in terms of mug atoms of S ml(-1)). These mutants were found to possess intact thiosulfate dehydrogenase, but defunct sulfite dehydrogenase, activities.
View Article and Find Full Text PDFTwo tropical leguminous-rhizospheric strains, SST and JT 001, phylogenetically closest to Paracoccus thiocyanatus and Paracoccus pantotrophus, respectively, were isolated on reduced sulfur compounds as sole energy and electron sources. While SST had versatile chemolithotrophic abilities to oxidize thiosulfate, tetrathionate, thiocyanate, sulfide and elemental sulfur, JT 001 could oxidize thiosulfate, soluble sulfide, elemental sulfur and a relatively lesser amount of tetrathionate. Positive hybridization signals were detected for JT 001 but not SST, when their genomic DNAs were probed with DIG-labeled sulfur oxidation genes amplified from the chemolithotrophic alphaproteobacterium Pseudaminobacter salicylatoxidans KCT001.
View Article and Find Full Text PDFSulfur oxidation in Pseudaminobacter salicylatoxidans KCT001 is rendered by the combined action of several enzymes encoded by a thiosulfate-inducible sox operon. In this study it has been conclusively demonstrated by insertional mutagenesis that the regulatory gene of this operon is soxR, which encodes a DNA-binding protein belonging to the ArsR-SmtB family. SoxR was found to bind to two promoter-operator segments within the sox cluster, of which the one (wx) located between soxW and soxX controls the expression of sulfur-oxidation genes soxX through soxD while the other, a bi-directional element (sv) located between soxS and soxV, controls the expression of soxVW in one direction and the putative regulatory cluster soxSRT in the other.
View Article and Find Full Text PDFParacoccus versutus-like isolates from the rhizosphere of Clitoria ternatea, a slender leguminous herb (family--Papilionaceae), found ubiquitously in waste places and village forests of the Lower Gangetic plains of India, presented a case of graduated infraspecific variation that was capped by the identification of a new species Paracoccus bengalensis (type strain JJJ(T) = LMG 22700(T) = MTCC 7003(T)). The diverged phenetic and genetic structure of these sulfur-oxidizing chemolithoautotrophs presented a case of apparent nonconformity of 16S rRNA gene sequence similarities with results of DNA-DNA hybridization. Despite high 16S rRNA gene sequence similarity with P.
View Article and Find Full Text PDFChemolithotrophic sulfur oxidation (Sox) in the alpha-proteobacterium Pseudaminobacter salicylatoxidans KCT001 was found to be governed by the gene cluster soxSRT-soxVWXYZABCD. Independent transposon-insertion mutations in the genes soxB, soxC, soxD, and also in a novel open reading frame (ORF), designated as soxT, afforded revelation of the entire sox locus of this bacterium. The deduced amino acid sequence of the novel ORF soxT comprised 362 residues and exhibited significant homology with hypothetical proteins of diverse origin, including a permease-like transport protein of Escherichia coli.
View Article and Find Full Text PDFThe bacterial strain SJT(T), along with 15 other mesophilic, neutrophilic and facultatively sulfur-oxidizing chemolithotrophic isolates, was isolated by enrichment on reduced sulfur compounds as the sole energy and electron source from soils immediately adjacent to the roots of Clitoria ternatea, a slender leguminous herb of the Lower Gangetic plains of India. Strain SJT(T) was able to oxidize thiosulfate and elemental sulfur for chemolithoautotrophic growth. 16S rRNA and recA gene sequence-based phylogenetic analyses showed that the Gram-negative rod-shaped bacterium belonged to the genus Mesorhizobium and was most closely related to Mesorhizobium loti, Mesorhizobium plurifarium, Mesorhizobium amorphae and Mesorhizobium chacoense.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
September 2005
A Gram-negative, rod-shaped, urea-dissolving and non-spore-forming bacterium, designated strain NiVa 51(T), was isolated from water of the River Torsa in Hasimara, Jalpaiguri district, West Bengal, India. On the basis of 16S rRNA gene sequence similarity, strain NiVa 51(T) was shown to belong to the gamma-Proteobacteria and to be related to Serratia marcescens subsp. sakuensis (98.
View Article and Find Full Text PDFTwelve chemolithotrophic strains were isolated from temperate orchard soil on reduced sulfur compounds as energy and electron sources and characterized on the basis of their physiological properties and ability to oxidize various reduced sulfur compounds. The new isolates could oxidize tetrathionate as well as thiosulfate, and oxidation of the latter involved conversion of thiosulfate to tetrathionate followed by its accumulation and eventual oxidation to sulfate, manifested in the production of acid. The mesophilic, neutrophilic, Gram-negative and coccoid bacteria had a respiratory metabolism.
View Article and Find Full Text PDFMicrobial oxidation of reduced inorganic sulfur compounds mainly sulfur anions in the environment is one of the major reactions of the global sulfur cycle mediated by phylogenetically diverse prokaryotes. The sulfur oxidizing gene cluster (sox) of alpha-Proteobacteria comprises of at least 16 genes, which form two transcriptional units, viz., soxSRT and soxVWXYZABCDEFGH.
View Article and Find Full Text PDFMicrobial oxidation of reduced inorganic sulfur compounds in the environment is one of the major reactions of the global sulfur cycle mediated by phylogenetically diverse prokaryotes. The sulfur oxidizing gene cluster (sox) of alpha-Proteobacteria comprises of at least 15 genes, which form two transcriptional units, viz soxSRT and soxVWXYZABCDEFGH. Sequence analysis reveals that SoxR belongs to the ArsR family of helix-turn-helix DNA binding proteins.
View Article and Find Full Text PDFFive facultative sulfur chemolithotrophs were isolated from soils to study the diversity of sulfur lithotrophy. Phenotypic characteristics, including sulfur lithotrophic properties and chemotaxonomic features of the isolates, were similar to those of the members of the colorless sulfur bacteria. 16S rDNA sequence analyses rendered placing the isolates to three distinct phylogenetic clusters of alpha-proteobacteria.
View Article and Find Full Text PDFWe have isolated and characterized a double-stranded DNA bacteriophage (TPC-1) of Bosea thiooxidans, a facultative sulfur chemolithotrophic bacterium. The name 'thiophage' is introduced for phage(s) infecting sulfur chemolithotrophic bacteria. Electron micrographs showed the phage particle with an icosahedral head and a very short wedge-like tail.
View Article and Find Full Text PDF