Publications by authors named "Pradip K Maity"

The enteropathogenic and enterohemorrhagic NleB proteins as well as the SseK proteins are type III secretion system effectors that function as glycosyltransferase enzymes to post-translationally modify host substrates on arginine residues. This modification is unusual because it occurs on the guanidinium groups of arginines, which are poor nucleophiles, and is distinct from the activity of the mammalian -linked -acetylglucosaminyltransferase. We conducted high-throughput screening assays to identify small molecules that inhibit NleB/SseK activity.

View Article and Find Full Text PDF

The development and application of high-load, recyclable magnetic Co/C hybrid ROMP-derived benzenesulfonyl chloride and analogues is reported. The regeneration and utility of these reagents in the methylation/alkylation of various carboxylic acids is demonstrated via efficient retrieval of the magnetic reagent with a neodymium magnet. Additional reactions employing the analogue sulfonic acid and in situ generated magnetic benzenesulfonyl azide are also reported.

View Article and Find Full Text PDF

The development of new ROMP-derived silica-immobilized heterocyclic phosphate reagents and their application in purification-free protocols is reported. Grafting of norbornenyl norbornenyl-functionalized (Nb-tagged) silica particles with functionalized Nb-tagged heterocyclic phosphate monomers efficiently yield high-load, hybrid silica-immobilized oligomeric heterobenzyl phosphates (Si-OHBP) and heterotriazolyl phosphates (Si-OHTP) as efficient alkylation agents. Applications of these reagents for the diversification of N-, O-, and S-nucleophilic species, for efficient heterobenzylation and hetero(triazolyl)methylation have been validated.

View Article and Find Full Text PDF

Applications of silica-ROMP reagents in a one-pot, sequential protocol have been developed for the synthesis of a variety of diverse benzoxathiazepine 1,1-dioxides. This protocol includes sulfonylation, intramolecular SNAr, alkylation with silica-supported oligomeric benzyl (Si-OBPn) and triazole (Si-OTPn) phosphates, and intermolecular SNAr addition with a number of secondary amines in one-pot to afford a variety of unique benzoxathiazepine 1,1-dioxides sultams in good to excellent yields.

View Article and Find Full Text PDF

The syntheses of silica-supported oligomeric benzyl phosphates (Si-OBP(n)) and triazole phosphates (Si-OTP(n)) using ring-opening metathesis polymerization (ROMP) for use as efficient alkylating reagents is reported. Ease of synthesis and grafting onto the surface of norbornenyl-tagged (Nb-tagged) silica particles has been demonstrated for benzyl phosphate and triazole phosphate monomers. It is shown that these silica polymer hybrid reagents, Si-OBP(n) and Si-OTP(n), can be used to carry out alkylation reactions with an array of different nucleophiles to afford the corresponding benzylated and (triazolyl)methylated products in good yield and high purity.

View Article and Find Full Text PDF

A novel one-pot sulfonylation/intramolecular thia-Michael protocol is reported for the synthesis of 1,5,2-dithiazepine 1,1-dioxides. Sulfonylation between cysteine ethyl ester/cysteamine and 2-chloroethanesulfonyl chloride, followed by intramolecular thia-Michael addition, was achieved and afforded the titled 1,5,2-dithiazepine-1,1-dioxide scaffolds. Diversification was demonstrated for future library synthesis.

View Article and Find Full Text PDF

Breast cancer is second most common cancer in Indian women. It is often curable by various treatment modalities when detected in early stage. Prognosis and selection of therapy in breast cancer depends upon various factors including clinical parameters, histopathological subtype and molecular characteristics of primary tumour.

View Article and Find Full Text PDF

An operationally simple method for the acylation of amines utilizing carbon-coated metal nanoparticles as recyclable supports is reported. Highly magnetic carbon-coated cobalt (Co/C) and iron (Fe/C) nanobeads were functionalized with a norbornene tag (Nb-tag) through a "click" reaction followed by surface activation employing Grubbs-II catalyst and subsequent grafting of acylated N-hydroxysuccinimide ROMPgels (ROMP=ring-opening metathesis polymerization). The high loading (up to 2.

View Article and Find Full Text PDF

A combination of MACOS scale-out and ROMP-derived oligomeric triazole phosphates (OTP(n)) have been successfully utilized for the preparation of a 106-member library of triazole containing benzothiaoxazepine-1,1-dioxides. This report demonstrates the utilization of a suite of soluble OTP(n) reagents for facile (triazolyl)methylation of 10 MACOS-derived sultam scaffolds in purification-free process for parallel synthesis of small molecule collections for HTS.

View Article and Find Full Text PDF

The utilization of a monomer-on-monomer (MoM) intramolecular Mitsunobu cyclization reaction employing norbornenyl-tagged (Nb-tagged) reagents is reported for the synthesis of benzofused thiadiazepine-dioxides. Facile purification was achieved via ring-opening metathesis (ROM) polymerization initiated by one of three metathesis catalyst methods: (i) free metathesis catalyst, (ii) surface-initiated catalyst-armed silica, or (iii) surface-initiated catalyst-armed Co/C magnetic nanoparticles.

View Article and Find Full Text PDF

Soluble, high-load ring-opening metathesis polymerization (ROMP)-derived oligomeric triazole phosphates (OTP) are reported for application as efficient triazolating reagents of nucleophilic species. Utilizing a "Click"-capture, ROMP, release protocol, the efficient and purification-free, direct triazolation of N-, O-, and S-nucleophilic species was successfully achieved. A variety of OTP derivatives were rapidly synthesized as free-flowing solids on a multigram scale from commercially available materials.

View Article and Find Full Text PDF

The combination of norbornenyl-tagged (Nb-tagged) silica particles and functionalized Nb-tagged monomers for the generation of hybrid Si-ROMP reagents and scavengers is reported. Specifically Si-ROMP-derived bis-acid chloride, dichlorotriazine, and triphenylphosphine scavenger/reagents have been grafted from the surface of silica particles utilizing surface-initiated, ring-opening metathesis polymerization (ROMP). These hybrid polymeric materials combine the physical properties of current immobilized silica reagents and represent a key advancement in load by merging the inherent tunable properties of the ROMP-derived oligomers with silica supports for application in a parallel synthesis.

View Article and Find Full Text PDF

A monomer-on-monomer (MoM) Mitsunobu reaction utilizing norbornenyl-tagged (Nb-tagged) reagents is reported, whereby purification was rapidly achieved by employing ring-opening metathesis polymerization, which was initiated by any of three methods utilizing Grubbs catalyst: (i) free catalyst in solution, (ii) surface-initiated catalyst-armed silica, or (iii) surface-initiated catalyst-armed Co/C magnetic nanoparticles.

View Article and Find Full Text PDF

The development of new ROMP-based oligomeric benzyl phosphates (OBP(n)) is reported for use as soluble, stable benzylating reagents. These oligomeric reagents are readily synthesized from commercially available materials and conveniently polymerized and purified in a one-pot process, affording bench-stable, pure white, free-flowing solids on multigram scale. Utilization in benzylation reactions with a variety of nucleophiles is reported.

View Article and Find Full Text PDF

We describe herein a one-pot synthesis of novel tetracyclic scaffolds that incorporate a fusion of a proline, 1,2,3-triazole ring with [1,4]-benzodiazepin-8(4H)-one ring systems following click chemistry. The expected peptide bond formation followed by in situ 1,3-dipolar cycloaddition in absence of any catalyst led to the formation of new triazole fused benzodiazepine derivatives.

View Article and Find Full Text PDF