Publications by authors named "Pradip Dutta"

Chitosan (Cs) being a natural biopolymer serves as an excellent template to construct active packaging materials for achieving sustainable development. In this study, Cs was chemically modified via epoxide ring opening click reaction using vinyl epoxide to obtain a novel chitosan vinyl epoxide (Cs-VE) derivative with hydroxyl and olefinic functional groups. The Cs-VE transparent film was fabricated through the eco-friendly solution casting technique.

View Article and Find Full Text PDF

The photochemical action of arylazo sulfones under visible light irradiation has recently gained considerable attention for the construction of carbon-carbon and carbon-heteroatom bonds in organic synthesis. The inherent dyedauxiliary group (-NSOR) embedded in the reagent is responsible for the absorption of visible light even in the absence of a photocatalyst, additive or oxidant, leading to the generation of three different radicals, . aryl (carbon-centred), sulfonyl (sulphur-centred) and diazenyl (nitrogen-centred) radicals, under different reaction conditions.

View Article and Find Full Text PDF

Global warming is emerging as a significant issue because of increasing CO levels in the atmosphere due to urbanization, industrialization, and fossil-fuel usage. Therefore, reducing atmospheric CO levels using new materials with high carbon capture capacity and efficient CO capture technologies is essential. Herein, we propose a hybrid chitosan (CS) aerogel containing multi-walled carbon nanotubes (MWCNTs) and an arginine (Arg) aerogel (CSCNTArg aerogel) for efficient carbon capture.

View Article and Find Full Text PDF

A calcium-chitosan-triazole nanocomplex (Ca@CS-Tz) was synthesized via the robust copper catalyzed azide-alkyne cycloaddition using calcium carbide (CaC2) as an in-situ source of acetylene. The nanocomplex was characterized by various techniques and it was proved to be an efficient drug carrier with satisfactory antimicrobial and antioxidant properties. Quercetin loaded nanocomplex (encapsulation efficiency- 68.

View Article and Find Full Text PDF

The aim of this study was to develop a green method to fabricate a novel CS modified N-(4-hydroxyphenyl)- methacrylamide conjugate (CSNHMA) and to evaluate its biomedical potential. CSNHMA has been prepared by a simple method via aza Michael addition reaction between CS and N- (4-hydroxyphenyl)-methacrylamide (NHMA) in ethanol. Its structural and morphological properties were characterized by various analysis techniques.

View Article and Find Full Text PDF

Antibody-drug conjugates (ADCs) combine the high specificity of antibodies with cytotoxic payloads. However, the present strategies for the synthesis of ADCs either yield unstable or heterogeneous products or involve complex processes. Here, we report a computational approach that leverages molecular docking and molecular dynamics simulations to design ADCs that self-assemble through the non-covalent binding of the antibody to a payload that we designed to act as an affinity ligand for specific conserved amino acid residues in the antibody.

View Article and Find Full Text PDF

Diaminocyclohexane-Pt(ii)-phenalenyl complexes (1 and 2) showed an appropriate balance between efficacy and toxicity. Compound 2 showed nearly two-fold higher tumour growth inhibition than oxaliplatin in a murine NSCLC tumour model, when a combined drug development approach was used. The fluorescent properties of phenalenone were utilized to understand the mechanistic details of the drug.

View Article and Find Full Text PDF

The fundamental characteristics of metal coatings that influence heat transfer are porosity and surface roughness. It is a challenge to analyze the porosity and surface roughness due to the inadequate amount of copper per coated area. In this study, a new approach to non-invasively determine the porosity of metal films utilizing a helium pycnometer and computed micro-tomography (CMT) is presented.

View Article and Find Full Text PDF

In recent years with the advancement of nanotoxicology, the scientific communities drastically increased the investigation of the potential toxicity of nanominerals which are present in all atmospheres as well as are used in a variety of applications. In this study, we reported how Quartz Nanoparticles (QNPs) depending on concentration induces different signature ER stress markers in A549 cells. QNPs induced concentration-dependent decrease in cell viability and this concentration dependent toxicity intensifies production of reactive oxygen species leading to oxidative stress and inflammation.

View Article and Find Full Text PDF

Quartz nanoparticles (QNPs) cause various diseases in the biological systems and are thus considered as hazardous materials; however, their properties are important in a wide range of biological and pharmaceutical entities. The present study was initiated to enhance the understanding of the genotoxic potential and focused on the mechanism involved in the indigenous quartz nanoparticles induced toxicity in A549 cells. The results show a concentration dependent decrease in the cell viability of A549 cells.

View Article and Find Full Text PDF

Three components, one pot synthesis of thiasalen/selenasalen Ni(II), Pd(II) and Pt(II) complexes, 14-19, by the oxidative addition of S-S/Se-Se bond of bis(o-formylphenyl)disulfide/-diselenide to Ni(0), Pd(0) and Pt(0) followed by in situ Schiff base formation with ethylenediamine is reported. S-S or Se-Se bonds were cleaved and coordinated to the metal center as thiolate (ArS(-)) or selenolate (ArSe(-)) while the formal oxidation state of metal centers was changed from '0' to '+2'. The disulfide/diselenide reacted with zero-valent metals at room temperature to give only the monometallic complexes.

View Article and Find Full Text PDF

Thiasalen podand 9 having S2N2 donor set has been synthesized by the condensation of 2-methylthiobenzaldehyde with ethylenediamine. The reaction of the thiasalen podand ligand with Pd(II) afforded two complexes depending on the reaction time. Shorter reaction time (5 min) afforded thioether complex 10; whereas with increase in reaction time (4 h) thioether-thiolate complex 11 was obtained via cleavage of one of the two S-C(Me) bonds of bis(methyl)thiasalen podand upon complexation.

View Article and Find Full Text PDF

We propose a new method for evaluating the adsorbed phase volume during physisorption of several gases on activated carbon specimens. We treat the adsorbed phase as another equilibrium phase which satisfies the Gibbs equation and hence assume that the law of rectilinear diameters is applicable. Since invariably the bulk gas phase densities are known along measured isotherms, the constants of the adsorbed phase volume can be regressed from the experimental data.

View Article and Find Full Text PDF

Clerodendron serratum (Linn.) Moon (family: Verbenaceae) is used in Indian System of Medicine for asthma and cough. In the present study the extract of the bark of the plant was standardized using oleanolic acid as a marker.

View Article and Find Full Text PDF

A synthetic approach to synthesize EDOT and EDOS from a common precursor 5 is reported. The method involves zirconocene dichloride mediated reaction of a common diyne 5 followed by treatment with disulfur dichloride (S(2)Cl(2)) and in situ prepared selenium dichloride (SeCl(2)). The higher lability of alpha-trimethylsilyl group in EDOS compared to EDOT is explained using DFT calculations.

View Article and Find Full Text PDF

Based on an established 3D pharmacophore, a series of quinoline derivatives were synthesized. The opioidergic properties of these compounds were determined by a competitive binding assay using (125)I-Dynorphine, (3)H-DAMGO and (125)I-DADLE for kappa, mu, and delta receptors, respectively. Results showed varying degree of activities of the compounds to kappa and mu opioid receptors with negligible interactions at the delta receptor.

View Article and Find Full Text PDF

In this work, the film thickness (l0) effect on the phase and dewetting behaviors of the blend film of poly(methyl methacrylate)/poly(styrene-ran-acrylonitrile) (PMMA/SAN) has been studied by in situ atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The thinner film shows the more compatibility of the blend, and the phase separation of the film occurs at l0>5Rg (radius of gyration). An initially time-independent q*, the characteristic wavenumber of the phase image, which is in good agreement of Cahn's linearized theory for the early stage of spinodal decomposition, has been obtained in real space and discussed in detail.

View Article and Find Full Text PDF