Publications by authors named "Pradip B Dhamole"

This study reports the sugaring-out extraction of erythromycin from fermentation broth using acetonitrile (ACN) as solvent and glucose as a mass separating agent. Different process parameters-glucose concentration, temperature, ACN/water ratio and pH-were optimized to achieve maximum extraction of erythromycin. 88% (w/w) of erythromycin was extracted from the model system with following optimized conditions: glucose 156.

View Article and Find Full Text PDF

The foremost aim of the present study was to enhance butanol production in an extractive fermentation study in presence of non-ionic surfactant using immobilized cells. Earlier studies had shown improved butanol production with non-ionic surfactant and immobilized cells independently. Therefore, in the present work, the combined effect of extractive fermentation and immobilized cells on butanol production was studied.

View Article and Find Full Text PDF

The present study was undertaken in order to investigate effect of diverse parameters such as fermentation media, pH, initial concentration of biomass, different surfactant concentrations, and immobilization on increasing butanol and total solvent production. Cheng's fermentation media was successfully tested and perceived to increase final solvents concentration. Controlled pH at 12th and 24th hours had negative effect on butanol enhancement; however, it resulted in more butyric acid production which remained accumulated.

View Article and Find Full Text PDF

Extractive butanol fermentation with non-ionic surfactant, a recently explored area, has shown promising results with several advantages but is relatively less investigated. This work reports the extractive fermentation with selected non-ionic surfactants (L62 and L62D) to enhance butanol production using a high-butanol producing strain (Clostridium beijerinckii MCMB 581). Biocompatibility studies with both the surfactants showed growth.

View Article and Find Full Text PDF

Immobilized Candida tropicalis cells in freeze dried calcium alginate beads were used for production of xylitol from lignocellulosic waste like corn cob hydrolysate without any detoxification and sterilization of media. Media components for xylitol fermentation were screened by statistical methods. Urea, KHPO and initial pH were identified as significant variables by Plackett-Burman (PB) design.

View Article and Find Full Text PDF

This study reports an industrially applicable non-sterile xylitol fermentation process to produce xylitol from a low-cost feedstock like corn cob hydrolysate as pentose source without any detoxification. Different immobilization matrices/mediums (alginate, polyvinyl alcohol, agarose gel, polyacrylamide, gelatin, and κ-carrageenan) were studied to immobilize Candida tropicalis NCIM 3123 cells for xylitol production. Amongst this calcium alginate, immobilized cells produced maximum amount of xylitol with titer of 11.

View Article and Find Full Text PDF

This work deals with finding a suitable non-ionic surfactant which has high butanol capturing capacity and can be separated at a temperature close to room temperature and does not extract any intermediates or substrate (i.e., glucose).

View Article and Find Full Text PDF

This work investigates the performance of acclimatized biomass for denitrification of high strength nitrate waste (10,000 mg/L NO3) from a nuclear industry in a continuous laboratory scale (32 L) and pilot scale reactor (330 L) operated over a period of 4 and 5 months, respectively. Effect of substrate fluctuations (mainly C/NO3-N) on denitrification was studied in a laboratory scale reactor. Incomplete denitrification (95-96 %) was observed at low C/NO3-N (≤2), whereas at high C/NO3-N (≥2.

View Article and Find Full Text PDF

Ferulic acid (FA) and p-coumaric acid (pCA) are high-value products that can be obtained by alkaline hydrolysis of lignocellulose. Present work explores the potential of surfactant-based cloud-point extraction (CPE) for FA and pCA extraction from corn cob hydrolysate. More than 90 % (w/w) extraction of both FA and pCA was achieved from model system with L92.

View Article and Find Full Text PDF

This paper presents the integrated removal of carbon (measured as chemical oxygen demand i.e. COD) and NO(x)-N by sequentially adapted sludge, studied in an airlift reactor (ALR).

View Article and Find Full Text PDF

Uranium extraction and regeneration of ion exchange resin generates concentrated nitrate effluents (typically 500 to 10,000 ppm NO(3)-N) that are highly alkaline in nature (pH 9.0 to 11.0).

View Article and Find Full Text PDF

One of the major wastes generated by fertilizer, explosive, and nuclear industries are nitrate (as high as 1,000 ppm NO(3)N) whose removal before disposal has become a growing concern. In this study, an active denitrifying sludge was immobilized onto support materials like cloth and polyurethane foam and their denitrification efficiency on high nitrate wastes [1,000 ppm NO(3) (225 ppm NO(3)N), 5,000 ppm NO(3) (1,129 ppm NO(3)N), 7,500 ppm NO(3) (1,693 ppm NO(3) N)] was studied. Results showed complete degradation of the nitrate wastes (225 ppm NO(3)N, 1,129 ppm NO(3)N, and 1,693 ppm NO(3)N) without any accumulation of nitrite in a period of only 1, 4, and 10 h, respectively.

View Article and Find Full Text PDF

Denitrification of synthetic high nitrate waste containing 9032 ppm NO(3)-N (40,000 ppm NO(3)) in a time period of only 6h has been achieved in our previous study using activated sludge. The activated sludge culture was acclimatized by a stepwise increase in the nitrate concentration of synthetic waste. In the present work, studies were carried out on the changing microbial population of the sludge and the physiology of nitrate metabolism during the various stages of adaptation process to high strength synthetic nitrate waste.

View Article and Find Full Text PDF

The aim of the present work was to study the treatment of high strength nitrate waste (40000 ppm NO(3) i.e., 9032 ppm NO(3)-N) by acclimatizing sludge initially capable of degrading dilute streams (100-200 ppm NO(3)-N).

View Article and Find Full Text PDF