Genotypes exhibiting an increased mutation rate, called hypermutators, can propagate in microbial populations because they can have an advantage due to the higher supply of beneficial mutations needed for adaptation. Although this is a frequently observed phenomenon in natural and laboratory populations, little is known about the influence of parameters such as the degree of maladaptation, stress intensity, and the genetic architecture for adaptation on the emergence of hypermutators. To address this knowledge gap, we measured the emergence of hypermutators over ~1,000 generations in experimental populations exposed to different levels of osmotic or antibiotic stress.
View Article and Find Full Text PDFThe European Commission's Innovative Medicines Initiative (IMI) has funded many projects focusing on neurodegenerative disorders (ND) that aimed to improve the diagnosis, prevention, treatment and understanding of NDs. To facilitate collaboration across this project portfolio, the IMI funded the "NEURONET" project between March 2019 and August 2022 with the aim of connecting these projects and promoting synergies, enhancing the visibility of their findings, understanding the impact of the IMI funding and identifying research gaps that warrant more/new funding. The IMI ND portfolio currently includes 20 projects consisting of 270 partner organizations across 25 countries.
View Article and Find Full Text PDFDespite ongoing debate, the amyloid β-protein (Aβ) remains the prime therapeutic target for the treatment of Alzheimer's disease (AD). However, rational drug design has been hampered by a lack of knowledge about neuroactive Aβ. To help address this deficit, we developed live-cell imaging of iPSC-derived human neurons (iNs) to study the effects of the most disease relevant form of Aβ-oligomeric assemblies (oAβ) extracted from AD brain.
View Article and Find Full Text PDFAntibiotic consumption and its abuses have been historically and repeatedly pointed out as the major driver of antibiotic resistance emergence and propagation. However, several examples show that resistance may persist despite substantial reductions in antibiotic use, and that other factors are at stake. Here, we study the temporal, spatial, and ecological distribution patterns of aminoglycoside resistance, by screening more than 160,000 publicly available genomes for 27 clusters of genes encoding aminoglycoside-modifying enzymes (AME genes).
View Article and Find Full Text PDFTriggering receptor on myeloid cells 2 (TREM2) is an innate immune receptor, upregulated on the surface of microglia associated with amyloid plaques in Alzheimer's disease (AD). Individuals heterozygous for the R47H variant of TREM2 have greatly increased risk of developing AD. We examined the effects of wild-type (WT), R47H and knock-out (KO) of human TREM2 expression in three microglial cell systems.
View Article and Find Full Text PDFThe IMI public-private partnership between the European Commission and the European Federation of Pharmaceutical Industries and Associations (EFPIA) was launched in 2008 with an initial budget of €2 billion. Aiming to accelerate the development of innovative medicines for areas of unmet clinical need, the IMI has committed over €380 million to projects on neurodegenerative disorders (NDD), catalyzing public-private collaborations at scale and at all stages of the R&D pipeline. Because of this vast investment, research on neurodegenerative diseases has made enormous strides in recent decades.
View Article and Find Full Text PDFThe receptor Triggering Receptor Expressed on Myeloid cells 2 (TREM2) is associated with several neurodegenerative diseases including Alzheimer's Disease and TREM2 stimulation represents a novel therapeutic opportunity. TREM2 can be activated by antibodies targeting the stalk region, most likely through receptor dimerization. Endogenous ligands of TREM2 are suggested to be negatively charged apoptotic bodies, mimicked by phosphatidylserine incorporated in liposomes and other polyanionic molecules likely binding to TREM2 IgV fold.
View Article and Find Full Text PDFAqueously soluble oligomers of amyloid-β peptide may be the principal neurotoxic forms of amyloid-β in Alzheimer's disease, initiating downstream events that include tau hyperphosphorylation, neuritic/synaptic injury, microgliosis and neuron loss. Synthetic oligomeric amyloid-β has been studied extensively, but little is known about the biochemistry of natural oligomeric amyloid-β in human brain, even though it is more potent than simple synthetic peptides and comprises truncated and modified amyloid-β monomers. We hypothesized that monoclonal antibodies specific to neurotoxic oligomeric amyloid-β could be used to isolate it for further study.
View Article and Find Full Text PDFIn Alzheimer disease (AD), the double-strand RNA-dependent kinase protein kinase R (PKR )/EIF2AK2 is activated in brain with increased phosphorylation of its substrate eukaryotic initiation factor 2 (eIF2). AD risk-promoting factors, such as ApoE4 allele or the accumulation of neurotoxic amyloid- oligomers (AOs), have been associated with activation of PKR-dependent signaling. Here, we report the discovery of a novel potent and selective PKR inhibitor (SAR439883) and demonstrate its neuroprotective pharmacological activity in AD experimental models.
View Article and Find Full Text PDFBackground And Objectives: Antimicrobial resistance is a growing global concern and has spurred increasing efforts to find alternative therapeutics. Bacteriophage therapy has seen near constant use in Eastern Europe since its discovery over a century ago. One promising approach is to use phages that not only reduce bacterial pathogen loads but also select for phage resistance mechanisms that trade-off with antibiotic resistance-so called 'phage steering'.
View Article and Find Full Text PDFCD33/Sialic acid-binding Ig-like lectin 3 (SIGLEC3) is an innate immune receptor expressed on myeloid cells and mediates inhibitory signaling via tyrosine phosphatases. Variants of CD33 are associated with Alzheimer's disease (AD) suggesting that modulation of CD33 signaling might be beneficial in AD. Hence, there is an urgent need for reliable cellular CD33 reporter systems.
View Article and Find Full Text PDFBackground: Plasmids are mobile genetic elements that often carry accessory genes, and are vectors for horizontal transfer between bacterial genomes. Plasmid detection in large genomic datasets is crucial to analyze their spread and quantify their role in bacteria adaptation and particularly in antibiotic resistance propagation. Bioinformatics methods have been developed to detect plasmids.
View Article and Find Full Text PDFProtein coding genes can contain specific motifs within their nucleotide sequence that function as a signal for various biological pathways. The presence of such sequence motifs within a gene can have beneficial or detrimental effects on the phenotype and fitness of an organism, and this can lead to the enrichment or avoidance of this sequence motif. The degeneracy of the genetic code allows for the existence of alternative synonymous sequences that exclude or include these motifs, while keeping the encoded amino acid sequence intact.
View Article and Find Full Text PDFResearch in the field of multisensory perception shows that what we hear can influence what we see in a wide range of perceptual tasks. It is however unknown whether this extends to the visual perception of risk, despite the importance of the question in many applied domains where properly assessing risk is crucial, starting with financial trading. To fill this knowledge gap, we ran interviews with professional traders and conducted three laboratory studies using judgments of financial asset risk as a testbed.
View Article and Find Full Text PDFMost antibodies display very low brain exposure due to the blood-brain barrier (BBB) preventing their entry into brain parenchyma. Transferrin receptor (TfR) has been used previously to ferry antibodies to the brain by using different formats of bispecific constructs. Tetravalent bispecific tandem immunoglobulin Gs (IgGs) (TBTIs) containing two paratopes for both TfR and protofibrillar forms of amyloid-beta (Aβ) peptide were constructed and shown to display higher brain penetration than the parent anti-Aβ antibody.
View Article and Find Full Text PDFAntibody therapies for Alzheimer's Disease (AD) hold promise but have been limited by the inability of these proteins to migrate efficiently across the blood brain barrier (BBB). Central nervous system (CNS) gene transfer by vectors like adeno-associated virus (AAV) overcome this barrier by allowing the bodies' own cells to produce the therapeutic protein, but previous studies using this method to target amyloid-β have shown success only with truncated single chain antibodies (Abs) lacking an Fc domain. The Fc region mediates effector function and enhances antigen clearance from the brain by neonatal Fc receptor (FcRn)-mediated reverse transcytosis and is therefore desirable to include for such treatments.
View Article and Find Full Text PDFThe bridging integrator 1 gene (BIN1) is a major genetic risk factor for Alzheimer's disease (AD). In this report, we investigated how BIN1-dependent pathophysiological processes might be associated with Tau. We first generated a cohort of control and transgenic mice either overexpressing human MAPT (TgMAPT) or both human MAPT and BIN1 (TgMAPT;TgBIN1), which we followed-up from 3 to 15 months.
View Article and Find Full Text PDFThe low-density lipoprotein receptor-related protein-1 (LRP1) has a dual role in the metabolism of the amyloid precursor protein (APP). In cellular models, LRP1 enhances amyloid-β (Aβ) generation via APP internalization and thus its amyloidogenic processing. However, conditional knock-out studies in mice define LRP1 as an important mediator for the clearance of extracellular Aβ from brain via cellular degradation or transcytosis across the blood-brain barrier (BBB).
View Article and Find Full Text PDFThe durability of host resistance is challenged by the ability of pathogens to escape the defence of their hosts. Understanding the variability in the durability of host resistance is of paramount importance for designing more effective control strategies against infectious diseases. Here, we study the durability of various clustered regularly interspaced short palindromic repeats-Cas (CRISPR-Cas) alleles of the bacteria Streptococcus thermophilus against lytic phages.
View Article and Find Full Text PDFBackground: Anti-amyloid β (Aβ) immunotherapy represents a major area of drug development for Alzheimer's disease (AD). However, Aβ peptide adopts multiple conformations and the pathological forms to be specifically targeted have not been identified. Aβ immunotherapy-related vasogenic edema has also been severely dose limiting for antibodies with effector functions binding vascular amyloid such as bapineuzumab.
View Article and Find Full Text PDFChronic inflammation represents a central component in the pathogenesis of Alzheimer's disease (AD). Recent work suggests that breaking immune tolerance by Programmed cell Death-1 (PD1) checkpoint inhibition produces an IFN-γ-dependent systemic immune response, with infiltration of the brain by peripheral myeloid cells and neuropathological as well as functional improvements even in mice with advanced amyloid pathology (Baruch et al., (): Nature Medicine, 22:135-137).
View Article and Find Full Text PDFIntroduction: Tau hyperphosphorylation and neurofibrillary tangles are histopathologic hallmarks of tauopathies. Histamine H3-receptor antagonists have been proposed to reduce tau hyperphosphorylation in preclinical models.
Methods: We evaluated the ability of SAR110894, a selective histamine H3-receptor antagonist, to inhibit tau pathology and prevent cognitive deficits in a tau transgenic mouse model (THY-Tau22).
Accumulation of neurofilaments (NFs), the major constituents of the neuronal cytoskeleton, is a distinctive feature of neurological diseases and several studies have shown that soluble NFs can be detected in the cerebrospinal fluid (CSF) of patients with neurological diseases, such as multiple sclerosis and frontotemporal dementia. Here we have used an inducible transgenic mouse model of neurodegeneration, CamKII-TetOp25 mice, to evaluate whether NF-L levels in CSF or blood can be used as a biochemical biomarker of neurodegeneration. Induction of p25 transgene brain expression led to increase in CSF and serum NF-L levels that correlated with ongoing neurodegeneration.
View Article and Find Full Text PDFExtracellular deposition of β amyloid plaques is an early event associated to Alzheimer's disease. Here, we have used in vivo gadolinium-stained high resolution (29(∗)29(∗)117 μm(3)) magnetic resonance imaging (MRI) to follow-up in a longitudinal way individual amyloid plaques in APP/PS1 mice and evaluate the efficacy of a new immunotherapy (SAR255952) directed against protofibrillar and fibrillary forms of Aβ. APP/PS1 mice were treated for 5 months between the age of 3.
View Article and Find Full Text PDFHistology is the gold standard to unveil microscopic brain structures and pathological alterations in humans and animal models of disease. However, due to tedious manual interventions, quantification of histopathological markers is classically performed on a few tissue sections, thus restricting measurements to limited portions of the brain. Recently developed 3D microscopic imaging techniques have allowed in-depth study of neuroanatomy.
View Article and Find Full Text PDF