Purpose: Recent studies have revealed structural changes after motor rehabilitation, but its morphological changes related to upper limb motor behaviours have not been studied exhaustively. Therefore, we aimed to map the grey matter (GM) changes associated with motor rehabilitation after stroke using voxel-based morphometry (VBM), deformation-based morphometry (DBM), and surface-based morphometry (SBM).
Methods: Forty-one patients with chronic stroke received twelve sessions of low-frequency repetitive transcranial magnetic stimulation plus intensive occupational therapy.
To evaluate activity changes associated with the intervention of low-frequency repetitive transcranial magnetic stimulation (rTMS) and intensive occupational therapy (OT) after stroke using functional magnetic resonance (fMRI). Seventy stroke patients were scanned while performing finger tapping tasks twice, before and 12 days after the intervention. Recovery of motor functions assessed using Fugl-Meyer Assessment (FMA) and Wolf Motor Function Test-Functional Ability Scale (WMFT-FAS) for upper extremity at each time point.
View Article and Find Full Text PDFBackground: Although quite a very few studies have tested structural connectivity changes following an intervention, it reflects only selected key brain regions in the motor network. Thus, the understanding of structural connectivity changes related to the motor recovery process remains unclear.
Objective: This study investigated structural connectivity changes of the motor execution network following a combined intervention of low-frequency repetitive transcranial magnetic stimulation (LF-rTMS) and intensive occupational therapy (OT) after a stroke using graph theory approach.