Land use/land cover (LULC) change, often a consequence of natural or anthropogenic drivers, plays a decisive role in governing global catchment dynamics, and subsequent impact on regional hydrology. Insight into the complex relationship between the drivers of LULC change and catchment hydrology is of utmost importance to decision makers. Contemplating the dynamic rainfall-runoff response of the Indian catchments, this study proposes an integrated modeling-based approach to identify the drivers and relative contribution to catchment hydrology.
View Article and Find Full Text PDFHuman-induced agricultural and developmental activities cause substantial alteration to the natural geography of a landscape; thereby accelerates the geologic soil erosion process. This necessitates quantification of catchment-scale soil erosion under both retrospective and future scenarios for efficient conservation of soil resources. Here, we present a revised universal soil loss equation (RUSLE) based soil erosion estimation framework at an unprecedentedly high spatial resolution (30 × 30 m) to quantify the average annual soil loss and sediment yield from an agriculture-dominated river basin.
View Article and Find Full Text PDF