Publications by authors named "Pradeep Patnana"

Growth factor independence 1 (GFI1) is a DNA-binding transcription factor and a key regulator of hematopoiesis. GFI1-36N is a germ line variant, causing a change of serine (S) to asparagine (N) at position 36. We previously reported that the GFI1-36N allele has a prevalence of 10% to 15% among patients with acute myeloid leukemia (AML) and 5% to 7% among healthy Caucasians and promotes the development of this disease.

View Article and Find Full Text PDF

Growth factor independence 1 (GFI1) is a transcriptional repressor protein that plays an essential role in the differentiation of myeloid and lymphoid progenitors. We and other groups have shown that GFI1 has a dose-dependent role in the initiation, progression, and prognosis of acute myeloid leukaemia (AML) patients by inducing epigenetic changes. We now demonstrate a novel role for dose-dependent GFI1 expression in regulating metabolism in haematopoietic progenitor and leukaemic cells.

View Article and Find Full Text PDF
Article Synopsis
  • GFI1 is a transcriptional repressor that is crucial for the differentiation of hematopoietic stem cells (HSCs) into myeloid and lymphoid cells, with its expression levels influencing HSC quantity and function.
  • In experiments using various mouse strains, HSCs with either reduced (KD) or completely absent (KO) GFI1 expression showed significantly lower numbers compared to wild-type (WT) mice, highlighting the importance of GFI1 levels.
  • Co-transplantation studies demonstrated that HSCs with reduced or lacking GFI1 expression have a lower capacity for self-renewal and differentiation, indicating a dose-dependent effect of GFI1 on HSC function.
View Article and Find Full Text PDF

The zinc finger protein Growth Factor Independence 1 (GFI1) acts as a transcriptional repressor regulating differentiation of myeloid and lymphoid cells. A single nucleotide polymorphism of , , has a prevalence of 7% in healthy Caucasians and 15% in acute myeloid leukemia (AML) patients, hence most probably predisposing to AML. One reason for this is that GFI1-36N differs from the wildtype form GFI1-36S regarding its ability to induce epigenetic changes resulting in a derepression of oncogenes.

View Article and Find Full Text PDF

Recent studies highlighted the role of transcription factors in metabolic regulation during hematopoiesis and leukemia development. GFI1B is a transcriptional repressor that plays a critical role in hematopoiesis, and its expression is negatively related to the prognosis of acute myeloid leukemia (AML) patients. We earlier reported a change in the metabolic state of hematopoietic stem cells upon Gfi1b deletion.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is a group of hematological cancers with metabolic heterogeneity. Oxidative phosphorylation (OXPHOS) has been reported to play an important role in the function of leukemic stem cells and chemotherapy-resistant cells and are associated with inferior prognosis in AML patients. However, the relationship between metabolic phenotype and genetic mutations are yet to be explored.

View Article and Find Full Text PDF

Growth Factor Independence 1 (GFI1) is a transcription factor with an important role in the regulation of development of myeloid and lymphoid cell lineages and was implicated in the development of myelodysplastic syndrome (MDS) and acute myeloid leukaemia (AML). Reduced expression of or presence of the (serine replaced with asparagine) variant leads to epigenetic changes in human and murine AML blasts and accelerated the development of leukaemia in a murine model of human MDS and AML. We and other groups previously showed that the allele or reduced expression of GFI1 in human AML blasts is associated with an inferior prognosis.

View Article and Find Full Text PDF
Article Synopsis
  • Acute myeloid leukaemia (AML) is a serious type of blood cancer that doesn’t have a good chance of recovery.
  • Research showed that cells from the bone marrow of people with AML help leukaemia cells survive chemotherapy by using a special process called Notch signalling.
  • Using a drug called dexamethasone blocked this Notch signalling, helping to reduce the number of leukaemia cells and improve survival in tests with mice.
View Article and Find Full Text PDF

Expression of hrp (hypersensitive reaction and pathogenicity) genes inside the host is crucial for virulence of phytopathogenic bacteria. The hrp genes encode components of type3 secretion system (T3SS), HR elicitors and several regulators, which are involved in the co-ordinated expression of hrp genes in the host environment and in hrp inducing chemically defined medium. However, little is known about specific host or environmental factors which may play a role in the induction of hrp gene expression.

View Article and Find Full Text PDF

Differentiation of hematopoietic stem cells is regulated by a concert of different transcription factors. Disturbed transcription factor function can be the basis of (pre)malignancies such as myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML). Growth factor independence 1b (Gfi1b) is a repressing transcription factor regulating quiescence of hematopoietic stem cells and differentiation of erythrocytes and platelets.

View Article and Find Full Text PDF

The differentiation of haematopoietic cells is regulated by a plethora of so-called transcription factors (TFs). Mutations in genes encoding TFs or graded reduction in their expression levels can induce the development of various malignant diseases such as acute myeloid leukaemia (AML). Growth Factor Independence 1 (GFI1) is a transcriptional repressor with key roles in haematopoiesis, including regulating self-renewal of haematopoietic stem cells (HSCs) as well as myeloid and lymphoid differentiation.

View Article and Find Full Text PDF

Abilities of bacterial pathogens to adapt to the iron limitation present in hosts is critical to their virulence. Bacterial pathogens have evolved diverse strategies to coordinately regulate iron metabolism and virulence associated functions to maintain iron homeostasis in response to changing iron availability in the environment. In many bacteria the ferric uptake regulator (Fur) functions as transcription factor that utilize ferrous form of iron as cofactor to regulate transcription of iron metabolism and many cellular functions.

View Article and Find Full Text PDF

Xanthomonas campestris pv. campestris causes black rot, a serious disease of crucifers. Xanthomonads encode a siderophore biosynthesis and uptake gene cluster xss (Xanthomonas siderophore synthesis) involved in the production of a vibrioferrin-type siderophore.

View Article and Find Full Text PDF