Background: Accumulation of reactive oxygen species (ROS) exacerbates neuronal loss during seizure-induced excitotoxicity. Keap1 (Kelch-like ECH-associated protein1)-nuclear factor erythroid 2-related factor 2 (Nrf2) axis is one of the known active antioxidant response mechanisms. Our study focused on finding the factors influencing Keap1-Nrf2 axis regulation in temporal lobe epilepsy (TLE) associated with hippocampal sclerosis (HS) patients.
View Article and Find Full Text PDFTemporal lobe epilepsy (TLE), accompanied by hippocampal sclerosis (HS), is the most common form of drug-resistant epilepsy (DRE). Nearly 20% of the patients showed seizure recurrence even after surgery, and the reasons are yet to be understood. Dysregulation of neurotransmitters is evident during seizures, which can induce excitotoxicity.
View Article and Find Full Text PDFEpileptic seizures occur due to an imbalance between excitatory and inhibitory neurosignals. The excitotoxic insults promote the accumulation of reactive oxygen species (ROS), unfolded proteins (UFP) aggregation, and sometimes even cell death. The epileptic brain samples in our study showed significant changes in the quantity of UFP accumulation.
View Article and Find Full Text PDF