This paper compared the effects of plant proteins over chemical methods in the morphology of zinc oxide nanoparticles (ZnO NPs) prepared by a co-precipitation method, and ethanol sensing performance of prepared thin films deposited over a fluorene-doped tin oxide (FTO) bind glass substrate using spray pyrolysis technique. The average crystallite sizes and diameters of the grain-sized cluster ZnO NPs were 25 and (701.79 ± 176.
View Article and Find Full Text PDFThis research investigated the capture of nitrate by magnesium ions in plasma-activated water (PAW) and its antifungal effect on the cell viability of the newly emerged mushroom pathogen . Optical emission spectra of the plasma jet exhibited several emission bands attributable to plasma-generated reactive oxygen and nitrogen species. The plasma was injected directly into deionized water (DW) with and without an immersed magnesium block.
View Article and Find Full Text PDFPolyethylene glycol-functionalized gold nanoparticles (Au@PEG NPs) were prepared by a simple plasma-assisted method without additional reducing chemicals. After irradiating tetrachloroauric acid (HAuCl) and polyethylene glycol (PEG) in aqueous medium with an argon plasma jet, the gold precursor transformed into an Au@PEG NP colloid that exhibited surface plasma resonance at 530 nm. When the plasma jet entered the water, additional reactive species were induced through interactions between plasma-generated reactive species and aqueous media.
View Article and Find Full Text PDFNitrogen fixation is crucial for plants as it is utilized for the biosynthesis of almost all biomolecules. Most of our atmosphere consists of nitrogen, but plants cannot straightforwardly assimilate this from the air, and natural nitrogen fixation is inadequate to meet the extreme necessities of global nutrition. In this study, nitrogen fixation in water was achieved by an AC-driven non-thermal atmospheric pressure nitrogen plasma jet.
View Article and Find Full Text PDFMicrowave (MW) radiation is increasingly being used for several biological applications. Many investigations have focused on understanding the potential influences of pulsed MW irradiation on biological solutions. The current study aimed to investigate the effects of 3.
View Article and Find Full Text PDFOver the past few decades, microwave (MW) radiation has been widely used, and its biological effects have been extensively investigated. However, the effect of MW radiation on human skin biology is not well understood. We study the effects of pulsed high-power microwaves (HPMs) on melanoma (G361 and SK-Mel-31) and normal human dermal fibroblast (NHDF) cells.
View Article and Find Full Text PDF