Alongside stereotactic magnetic resonance imaging, microelectrode recording (MER) is frequently used during the deep brain stimulation (DBS) surgery for optimal target localization. The aim of this study is to optimize subthalamic nucleus (STN) mapping using MER analytical patterns. 16 patients underwent bilateral STN-DBS.
View Article and Find Full Text PDFNeurons in many brain areas of different species reduce their response when a stimulus is repeated. Such adaptation or repetition suppression is prevalent in inferior temporal (IT) cortex. The mechanisms underlying repetition suppression in IT are still poorly understood.
View Article and Find Full Text PDFMany inferior temporal (IT) cortical neurons reduce their response when a stimulus is repeated. Proposed mechanisms underlying this repetition suppression range from "fatigue" to top-down expectations of repetition. Here we examine a prediction from simple fatigue-based models of adaptation: prolonging adapter duration will increase the adapter response, leading to more repetition suppression.
View Article and Find Full Text PDFIn many brain areas, repetition of a stimulus usually weakens the neural response. This "adaptation" or repetition suppression effect has been observed with mass potential measures such as event-related potentials (ERPs), in fMRI BOLD responses, and locally with local field potentials (LFPs) and spiking activity. Recently, it has been reported that macaque F5 mirror neurons do not show repetition suppression of their spiking activity for single repetitions of hand actions, which disagrees with human fMRI adaptation studies.
View Article and Find Full Text PDF