Computing binding affinities is of great importance in drug discovery pipeline and its prediction using advanced machine learning methods still remains a major challenge as the existing datasets and models do not consider the dynamic features of protein-ligand interactions. To this end, we have developed PLAS-20k dataset, an extension of previously developed PLAS-5k, with 97,500 independent simulations on a total of 19,500 different protein-ligand complexes. Our results show good correlation with the available experimental values, performing better than docking scores.
View Article and Find Full Text PDFHerein, a new type of carbodicarbene (CDC) comprising two different classes of carbenes is reported; NHC and CAAC as donor substituents and compare the molecular structure and coordination to Au(I)Cl to those of NHC-only and CAAC-only analogues. The conjugate acids of these three CDCs exhibit notable redox properties. Their reactions with [NO][SbF ] were investigated.
View Article and Find Full Text PDFA unique B-N coordinated phenanthroimidazole-based zinc salen was synthesized. The zinc salen thus synthesized acts as a photocatalyst for the cycloaddition of carbon dioxide with terminal epoxides under ambient conditions. DFT study of the cycloaddition of carbon dioxide with terminal epoxide indicates the preference of the reaction pathway when photocatalyzed by zinc salen.
View Article and Find Full Text PDFComputational methods and recently modern machine learning methods have played a key role in structure-based drug design. Though several benchmarking datasets are available for machine learning applications in virtual screening, accurate prediction of binding affinity for a protein-ligand complex remains a major challenge. New datasets that allow for the development of models for predicting binding affinities better than the state-of-the-art scoring functions are important.
View Article and Find Full Text PDFHere we report the synthesis of an N-heterocyclic carbene (NHC)-stabilised phosphinidene oxide by the controlled oxygenation of a phosphinidene under ambient conditions. This compound can be further oxygenated to a phosphinidene dioxide. The stoichiometric reduction of a phosphinidene oxide with KC resembles the pinacol coupling reaction-the reduction of a carbonyl compound.
View Article and Find Full Text PDF