Liquid-liquid phase separation of various transcription factors into biomolecular condensates plays an essential role in gene regulation. Here, using cellular models and in vitro studies, we show the spatiotemporal formation and material properties of p53 condensates that might dictate its function. In particular, p53 forms liquid-like condensates in the nucleus of cells, which can bind to DNA and perform transcriptional activity.
View Article and Find Full Text PDFLiquid-liquid phase separation (LLPS) is an emerging phenomenon in cell physiology and diseases. The weak multivalent interaction prerequisite for LLPS is believed to be facilitated through intrinsically disordered regions, which are prevalent in neurodegenerative disease-associated proteins. These aggregation-prone proteins also exhibit an inherent property for phase separation, resulting in protein-rich liquid-like droplets.
View Article and Find Full Text PDFLiquid-liquid phase separation (LLPS) has emerged as a crucial biological phenomenon underlying the sequestration of macromolecules (such as proteins and nucleic acids) into membraneless organelles in cells. Unstructured and intrinsically disordered domains are known to facilitate multivalent interactions driving protein LLPS. We hypothesized that LLPS could be an intrinsic property of proteins/polypeptides but with distinct phase regimes irrespective of their sequence and structure.
View Article and Find Full Text PDFBiomaterials mimicking extracellular matrices (ECM) for three-dimensional (3D) cultures have gained immense interest in tumor modeling and in vitro organ development. Here, we introduce a new class of amyloid fibril-based peptide hydrogels as a versatile biomimetic ECM scaffold for 3D cell culture and homogenous tumor spheroid modeling. We show that these amyloid fibril-based hydrogels are thixotropic and allow cancer cell adhesion, proliferation, and migration.
View Article and Find Full Text PDFBiomolecules are known to interact with metals and produce nanostructured hybrid materials with diverse morphologies and functions. In spite of the great advancement in the principles of biomimetics for designing complex nano-bio structures, the interplay between the physical properties of biomolecules such as sequence, charge, and hydrophobicity with predictable morphology of the resulting nanomaterials is largely unknown. Here, using various amyloidogenic proteins/peptides and their corresponding fibrils in combination with different pH, we show defined principle for gold nanocrystal growth into triangular and supra-spheres with high prediction.
View Article and Find Full Text PDFα-Synuclein (α-Syn) amyloids in synucleinopathies are suggested to be structurally and functionally diverse, reminiscent of prion-like strains. The mechanism of how the aggregation of the same precursor protein results in the formation of fibril polymorphs remains elusive. Here, we demonstrate the structure-function relationship of two polymorphs, pre-matured fibrils (PMFs) and helix-matured fibrils (HMFs), based on α-Syn aggregation intermediates.
View Article and Find Full Text PDFThe size of amyloid seeds is known to modulate their autocatalytic amplification and cellular toxicity. However, the seed size-dependent secondary nucleation mechanism, toxicity, and disease-associated biological processes mediated by α-synuclein (α-Syn) fibrils are largely unknown. Using the cellular model and reconstitution, we showed that the size of α-Syn fibril seeds dictates not only their cellular internalization and associated cell death but also the distinct mechanisms of fibril amplification pathways involved in the pathological conformational change of α-Syn.
View Article and Find Full Text PDFAberrant aggregation of the misfolded presynaptic protein, α-Synuclein (α-Syn) into Lewy body (LB) and Lewy neuritis (LN) is a major pathological hallmark of Parkinson's disease (PD) and other synucleinopathies. Numerous studies have suggested that prefibrillar and fibrillar species of the misfolded α-Syn aggregates are responsible for cell death in PD pathogenesis. However, the precise molecular events during α-Syn aggregation, especially in the early stages, remain elusive.
View Article and Find Full Text PDFSynergistic-aggregation and cross-seeding by two different proteins/peptides in the amyloid aggregation are well evident in various neurological disorders including Alzheimer's disease. Here, we show co-storage of human Prolactin (PRL), which is associated with lactation in mammals, and neuropeptide galanin (GAL) as functional amyloids in secretory granules (SGs) of the female rat. Using a wide variety of biophysical studies, we show that irrespective of the difference in sequence and structure, both hormones facilitate their synergic aggregation to amyloid fibrils.
View Article and Find Full Text PDFCytoplasmic deposition of aberrantly misfolded α-synuclein (α-Syn) is a common feature of synucleinopathies, including Parkinson's disease (PD). However, the precise pathogenic mechanism of α-Syn in synucleinopathies remains elusive. Emerging evidence has suggested that α-Syn may contribute to PD pathogenesis in several ways; wherein the contribution of fibrillar species, for exerting toxicity and disease transmission, cannot be neglected.
View Article and Find Full Text PDFAmyloid fibrils are structurally heterogeneous protein aggregates that are implicated in a wide range of neurodegenerative and other proteopathic diseases. These fibrils exist in a variety of different tertiary and higher-level structures, and this exhibited polymorphism greatly complicates any structural study of amyloid fibrils. In this work, we demonstrate a method of using polarization-resolved microscopy to directly observe the structural heterogeneity of individual amyloid fibrils using amyloid-bound fluorophores.
View Article and Find Full Text PDFPhotothermal effects of metal nanoparticles (NPs) are used for various biotechnological applications. Although NPs have been used in a polymerase chain reaction (PCR), the effects of shape on the photothermal properties and its efficiency on PCR are less explored. The present study reports the synthesis of triangular gold and silver NPs, which can attain temperatures up to ∼90 °C upon irradiation with 808 nm laser.
View Article and Find Full Text PDFSynucleinopathies are a class of neurodegenerative diseases, including Parkinson's disease (PD), Dementia with Lewy bodies (DLB), and Multiple System Atrophy (MSA). The common pathological hallmark of synucleinopathies is the filamentous α-synuclein (α-Syn) aggregates along with membrane components in cytoplasmic inclusions in the brain. β-Synuclein (β-Syn), an isoform of α-Syn, inhibits α-Syn aggregation and prevents its neurotoxicity, suggesting the neuroprotective nature of β-Syn.
View Article and Find Full Text PDF