Objective: Most radiotherapy patients with prostate cancer are treated with volumetric modulated arc therapy (VMAT). Advantages of VMAT may be limited by daily treatment uncertainties such as setup errors, internal organ motion, and deformation. The position and shape of prostate target as well as normal organ, i.
View Article and Find Full Text PDFPurpose: The purpose of present study is to estimate asymmetric margins of prostate target volume based on biological limitations with help of knowledge based fuzzy logic considering the effect of organ motion and setup errors.
Materials And Methods: A novel application of fuzzy logic modelling technique considering radiotherapy uncertainties including setup, delineation and organ motion was used in this study to derive margins. The new margin was applied in prostate cancer treatment planning and the results compared very well to current techniques Here volumetric modulated arc therapy treatment plans using stepped increments of asymmetric margins of planning target volume (PTV) were performed to calculate the changes in prostate radiobiological indices and results were used to formulate the rule based and membership function for Mamdani-type fuzzy inference system.
Background: Recently it was data wise established that there is a considerable dose difference due to source position from the surface of the patient, and due to the presence of inhomogeneities.
Aim: It aims at to find out the dose difference due to source position, and inhomogenieties in water phantom of high dose rate (HDR)(192) Ir mHDR-v2 source by experiment and by Monte Carlo (MC) simulation GEANT4 code.
Materials And Methods: The measured study of the source was done using an in-air ionization chamber, water phantom while the calculated study was done by modeling the water phantom and its water, inhomogeneities, position of source, and points of calculation.