Publications by authors named "Pradeep C Vasudevan"

Article Synopsis
  • The TAOK proteins are important kinases involved in various cellular functions and are linked to neurodevelopmental disorders (NDDs) like those caused by TAOK1 and TAOK2 variants.
  • A study analyzed clinical and genetic data from individuals with these variants, revealing that TAOK1 variants lead to significant neurodevelopmental issues and some novel characteristics, while TAOK2 variants are tied to neurodevelopmental abnormalities, autism, and obesity.
  • This research expands the understanding of these disorders by presenting the largest cohort of individuals with TAOK1-NDD and identifying new variants and phenotypes associated with both TAOK1 and TAOK2.
View Article and Find Full Text PDF

Purpose: Neurodevelopmental disorders (NDDs) encompass a spectrum of genetically heterogeneous disorders with features that commonly include developmental delay, intellectual disability, and autism spectrum disorders. We sought to delineate the molecular and phenotypic spectrum of a novel neurodevelopmental disorder caused by variants in the GNAI1 gene.

Methods: Through large cohort trio-based exome sequencing and international data-sharing, we identified 24 unrelated individuals with NDD phenotypes and a variant in GNAI1, which encodes the inhibitory Gαi1 subunit of heterotrimeric G-proteins.

View Article and Find Full Text PDF

Purpose: Congenital contractural arachnodactyly (CCA) is an autosomal dominant connective tissue disorder manifesting joint contractures, arachnodactyly, crumpled ears, and kyphoscoliosis as main features. Due to its rarity, rather aspecific clinical presentation, and overlap with other conditions including Marfan syndrome, the diagnosis is challenging, but important for prognosis and clinical management. CCA is caused by pathogenic variants in FBN2, encoding fibrillin-2, but locus heterogeneity has been suggested.

View Article and Find Full Text PDF

Background: Fetal structural anomalies, which are detected by ultrasonography, have a range of genetic causes, including chromosomal aneuploidy, copy number variations (CNVs; which are detectable by chromosomal microarrays), and pathogenic sequence variants in developmental genes. Testing for aneuploidy and CNVs is routine during the investigation of fetal structural anomalies, but there is little information on the clinical usefulness of genome-wide next-generation sequencing in the prenatal setting. We therefore aimed to evaluate the proportion of fetuses with structural abnormalities that had identifiable variants in genes associated with developmental disorders when assessed with whole-exome sequencing (WES).

View Article and Find Full Text PDF

We estimated the genome-wide contribution of recessive coding variation in 6040 families from the Deciphering Developmental Disorders study. The proportion of cases attributable to recessive coding variants was 3.6% in patients of European ancestry, compared with 50% explained by de novo coding mutations.

View Article and Find Full Text PDF

Bainbridge-Ropers syndrome is a genetic syndrome caused by heterozygous loss-of-function pathogenic variants in ASXL3, which encodes a protein involved in transcriptional regulation. Affected individuals have multiple abnormalities including developmental impairment, hypotonia and characteristic facial features. Seizures are reported in approximately a third of cases; however, the epileptology has not been thoroughly studied.

View Article and Find Full Text PDF

Exome sequencing in the context of developmental disorders is a useful technique, but variants found need to be interpreted in the context of detailed phenotypic information. Whole gene deletions and loss-of-function-mutations in the HNRNPU gene have been associated with intellectual disability and seizures in some patients. However, a unifying syndromic phenotype has not been previously elucidated.

View Article and Find Full Text PDF

Structural mosaic abnormalities are large post-zygotic mutations present in a subset of cells and have been implicated in developmental disorders and cancer. Such mutations have been conventionally assessed in clinical diagnostics using cytogenetic or microarray testing. Modern disease studies rely heavily on exome sequencing, yet an adequate method for the detection of structural mosaicism using targeted sequencing data is lacking.

View Article and Find Full Text PDF
Article Synopsis
  • - Lymphedema distichiasis syndrome (LDS) is a rare genetic condition leading to lower limb swelling and unusual eyelash patterns, alongside other potential health issues like cleft palates and heart defects.
  • - A study revealed that affected individuals in one family displayed severe kidney anomalies, including hydronephrosis and renal agenesis, suggesting a potential link between the FOXC2 gene mutation and kidney development issues.
  • - The authors recommend that anyone diagnosed with LDS should undergo a kidney ultrasound to check for abnormalities and that prenatal ultrasounds for at-risk pregnancies should look for signs like hydronephrosis, which may indicate LDS.
View Article and Find Full Text PDF

Steinfeld syndrome (MIM #184705) was first reported in 1982. It is characterised by holoprosencephaly and limb defects, however other anomalies may also be present. Following the initial description, three further cases have been reported in the literature.

View Article and Find Full Text PDF

Objective: The objective of this study is to report the prenatal ultrasound scan findings in four fetuses from two families postnatally diagnosed with 17q12 microdeletion syndrome on microarray CGH and review the literature.

Methods: We report two families presenting with prenatally detected hyperechogenic kidneys. In family 1, the mother had three pregnancies complicated by anhydramnios with bilateral hyperechogenic kidneys, hyperechogenic enlarged cystic kidneys, and bilateral hyperechogenic kidneys with polyhydramnios respectively.

View Article and Find Full Text PDF

De novo mutations (DNM) in SYNGAP1, encoding Ras/Rap GTPase-activating protein SynGAP, have been reported in individuals with nonsyndromic intellectual disability (ID). We identified 10 previously unreported individuals with SYNGAP1 DNM; seven via the Deciphering Developmental Disorders (DDD) Study, one through clinical analysis for copy number variation and the remaining two (monozygotic twins) via a research multi-gene panel analysis. Seven of the nine heterozygous mutations are likely to result in loss-of-function (3 nonsense; 3 frameshift; 1 whole gene deletion).

View Article and Find Full Text PDF

Delineating the genetic causes of developmental disorders is an area of active investigation. Mosaic structural abnormalities, defined as copy number or loss of heterozygosity events that are large and present in only a subset of cells, have been detected in 0.2-1.

View Article and Find Full Text PDF

Microcephaly with or without chorioretinopathy, lymphoedema, or mental retardation (MCLMR) (MIM No.152950) is a rare autosomal dominant condition for which a causative gene has recently been identified. Mutations in the kinesin family member 11 (KIF11) gene have now been described in 16 families worldwide.

View Article and Find Full Text PDF

MLL2 mutations are detected in 55 to 80% of patients with Kabuki syndrome (KS). In 20 to 45% patients with KS, the genetic basis remains unknown, suggesting possible genetic heterogeneity. Here, we present the largest yet reported cohort of 116 patients with KS.

View Article and Find Full Text PDF

Greig cephalopolysyndactyly syndrome (GCPS) is a multiple congenital malformation characterised by limb and craniofacial anomalies, caused by heterozygous mutation or deletion of GLI3. We report four boys and a girl who were presented with trigonocephaly due to metopic synostosis, in association with pre- and post-axial polydactyly and cutaneous syndactyly of hands and feet. Two cases had additional sagittal synostosis.

View Article and Find Full Text PDF

A range of phenotypes including Greig cephalopolysyndactyly and Pallister-Hall syndromes (GCPS, PHS) are caused by pathogenic mutation of the GLI3 gene. To characterize the clinical variability of GLI3 mutations, we present a subset of a cohort of 174 probands referred for GLI3 analysis. Eighty-one probands with typical GCPS or PHS were previously reported, and we report the remaining 93 probands here.

View Article and Find Full Text PDF

Prader-Willi syndrome is a complex multisystem disorder characterized by neonatal hypotonia, developmental delay, short stature, obesity, behaviour problems, hypothalamic hypogonadism and characteristic appearance. A number of sex chromosome abnormalities have been reported in children with Prader-Willi syndrome. We report on an infant with a 47, XXY karyotype and Prader-Willi syndrome diagnosed at 2 months of age.

View Article and Find Full Text PDF

Craniofrontonasal syndrome (CFNS, MIM 304110) is an X-linked craniofacial disorder that shows paradoxically greater severity in heterozygous females than in hemizygous males. Mutations have been identified in the EFNB1 gene that encodes a member of the ephrin-B family of transmembrane ligands for Eph receptor tyrosine kinases. Here, we describe two unrelated families, in both of which a mother and her son have proven mutations in EFNB1.

View Article and Find Full Text PDF