Glycogen synthase kinase 3 (GSK-3), a serine-threonine kinase with two isoforms (α and β) is implicated in the pathogenesis of type 2 diabetes mellitus (T2D). Recently, we reported the isoform-specific role of GSK-3 in T2D using homozygous GSK-3α/β knockout mice. Although the homozygous inhibition models are idealistic in a preclinical setting, they do not mimic the inhibition seen with pharmacological agents.
View Article and Find Full Text PDFCardiac fibrosis can be mitigated by limiting fibroblast-to-myofibroblast differentiation and proliferation. Human antigen R (HuR) modulates messenger RNA stability and expression of multiple genes. However, the direct role of cardiac myofibroblast HuR is unknown.
View Article and Find Full Text PDFBackground Lifestyle and metabolic diseases influence the severity and pathogenesis of cardiovascular disease through numerous mechanisms, including regulation via posttranslational modifications. A specific posttranslational modification, the addition of -linked β- acetylglucosamine (-GlcNAcylation), has been implicated in molecular mechanisms of both physiological and pathologic adaptations. The current study aimed to test the hypothesis that in cardiomyocytes, sustained protein -GlcNAcylation contributes to cardiac adaptations, and its progression to pathophysiology.
View Article and Find Full Text PDFMyocardial infarction (MI) is the leading cause of death worldwide. Glycogen synthase kinase-3 (GSK-3) has been considered to be a promising therapeutic target for cardiovascular diseases. GSK-3 is a family of ubiquitously expressed serine/threonine kinases.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
August 2023
Glycogen synthase kinase-3 (GSK-3) is a family of serine/threonine kinases. The GSK-3 family has 2 isoforms, GSK-3α and GSK-3β. The GSK-3 isoforms have been shown to play overlapping as well as isoform-specific-unique roles in both, organ homeostasis and the pathogenesis of multiple diseases.
View Article and Find Full Text PDFBackground: The tyrosine kinase inhibitor ponatinib is the only treatment option for chronic myelogenous leukemia patients with T315I (gatekeeper) mutation. Pharmacovigilance analysis of Food and Drug Administration and World Health Organization datasets has revealed that ponatinib is the most cardiotoxic agent among all Food and Drug Administration-approved tyrosine kinase inhibitors in a real-world scenario. However, the mechanism of ponatinib-induced cardiotoxicity is unknown.
View Article and Find Full Text PDFBackground: Heart failure is the leading cause of mortality, morbidity, and health care expenditures worldwide. Numerous studies have implicated GSK-3 (glycogen synthase kinase-3) as a promising therapeutic target for cardiovascular diseases. GSK-3 isoforms seem to play overlapping, unique and even opposing functions in the heart.
View Article and Find Full Text PDFObesity-associated metabolic disorders are rising to pandemic proportions; hence, there is an urgent need to identify underlying molecular mechanisms. Glycogen synthase kinase-3 (GSK-3) signaling is highly implicated in metabolic diseases. Furthermore, GSK-3 expression and activity are increased in Type 2 diabetes patients.
View Article and Find Full Text PDFHeart failure (HF) is a leading cause of morbidity and mortality across the world. Cardiac fibrosis is associated with HF progression. Fibrosis is characterized by the excessive accumulation of extracellular matrix components.
View Article and Find Full Text PDFHeart Failure (HF) is the leading cause of death worldwide. Myocardial fibrosis, one of the clinical manifestations implicated in almost every form of heart disease, contributes significantly to HF development. However, there is no approved drug specifically designed to target cardiac fibrosis.
View Article and Find Full Text PDFBackground: Myocardial infarction (MI) induces an intense injury response that ultimately generates a collagen-dominated scar. Although required to prevent ventricular rupture, the fibrotic process is often sustained in a manner detrimental to optimal recovery. Cardiac myofibroblasts are the cells tasked with depositing and remodeling collagen and are a prime target to limit the fibrotic process after MI.
View Article and Find Full Text PDFBrain-derived neurotrophic factor (BDNF) is a neuronal growth and survival factor that harbors cardioprotective qualities that may attenuate dilated cardiomyopathy. In ~30% of the population, BDNF has a common, nonsynonymous single nucleotide polymorphism rs6265 (Val66Met), which might be correlated with increased risk of cardiovascular events. We previously showed that BDNF correlates with better cardiac function in Duchenne muscular dystrophy (DMD) patients.
View Article and Find Full Text PDFIn light of the favorable outcomes of few small, non-randomized clinical studies, the Food and Drug Administration (FDA) has issued an Emergency Use Authorization (EUA) to Hydroxychloroquine (HCQ) for hospitalized coronavirus disease 2019 (COVID-19) patients. In fact, subsequent clinical studies with COVID-19 and HCQ have reported limited efficacy and poor clinical benefits. Unfortunately, a robust clinical trial for its effectiveness is not feasible at this emergency.
View Article and Find Full Text PDFThe advent of tyrosine kinase inhibitors (TKIs) targeted therapy revolutionized the treatment of chronic myeloid leukemia (CML) patients. However, cardiotoxicity associated with these targeted therapies puts the cancer survivors at higher risk. Ponatinib is a third-generation TKI for the treatment of CML patients having gatekeeper mutation T315I, which is resistant to the first and second generation of TKIs, namely, imatinib, nilotinib, dasatinib, and bosutinib.
View Article and Find Full Text PDFObesity is an independent risk factor for cardiovascular diseases (CVD), including heart failure. Thus, there is an urgent need to understand the molecular mechanism of obesity-associated cardiac dysfunction. We recently reported the critical role of cardiomyocyte (CM) Glycogen Synthase Kinase-3 beta (GSK-3β) in cardiac dysfunction associated with a developing obesity model (deletion of CM-GSK-3β prior to obesity).
View Article and Find Full Text PDFThe role of the transforming growth factor (TGF)-β pathway in myocardial fibrosis is well recognized. However, the precise role of this signaling axis in cardiomyocyte (CM) biology is not defined. In TGF-β signaling, SMAD4 acts as the central intracellular mediator.
View Article and Find Full Text PDFAims: Tyrosine kinase inhibitors (TKIs) have revolutionized the treatment of chronic myelogenous leukaemia (CML). However, cardiotoxicity of these agents remains a serious concern. The underlying mechanism of these adverse cardiac effects is largely unknown.
View Article and Find Full Text PDFWith an estimated 38 million current patients, heart failure (HF) is a leading cause of morbidity and mortality worldwide. Although the aetiology differs, HF is largely a disease of cardiomyocyte (CM) death or dysfunction. Due to the famously limited amount of regenerative capacity of the myocardium, the only viable option for advanced HF patients is cardiac transplantation; however, donor's hearts are in very short supply.
View Article and Find Full Text PDFBackground And Rationale: Obesity, an independent risk factor for the development of myocardial diseases is a growing healthcare problem worldwide. It's well established that GSK-3β is critical to cardiac pathophysiology. However, the role cardiomyocyte (CM) GSK-3β in diet-induced cardiac dysfunction is unknown.
View Article and Find Full Text PDFNearly every form of the heart disease is associated with myocardial fibrosis, which is characterized by the accumulation of activated cardiac fibroblasts (CFs) and excess deposition of extracellular matrix (ECM). Although, CFs are the primary mediators of myocardial fibrosis in a diseased heart, in the traditional view, activated CFs (myofibroblasts) and resulting fibrosis were simply considered the secondary consequence of the disease, not the cause. Recent studies from our lab and others have challenged this concept by demonstrating that fibroblast activation and fibrosis are not simply the secondary consequence of a diseased heart, but are crucial for mediating various myocardial disease processes.
View Article and Find Full Text PDFMitochondrial oxidative stress has emerged as a key contributor towards the development of diabetic cardiomyopathy. Peroxiredoxin-3 (Prx-3), a mitochondrial antioxidant, scavenges H2O2 and offers protection against ROS related pathologies. We observed a decrease in the expression of Prx-3 in the hearts of streptozotocin (STZ) induced diabetic rats, and also high glucose treated H9c2 cardiac cells, which may augment oxidative stress mediated damage.
View Article and Find Full Text PDFOxidative stress is closely associated with the pathophysiology of diabetic cardiomyopathy (DCM). The mitochondrial flavoenzyme monoamine oxidase A (MAO-A) is an important source of oxidative stress in the myocardium. We sought to determine whether MAO-A plays a major role in modulating DCM.
View Article and Find Full Text PDF