The opportunistic pathogen Streptococcus pneumoniae has dual lifestyles: one of an asymptomatic colonizer in the human nasopharynx and the other of a deadly pathogen invading sterile host compartments. The latter triggers an overwhelming inflammatory response, partly driven via pore forming activity of the cholesterol dependent cytolysin (CDC), pneumolysin. Although pneumolysin-induced inflammation drives person-to-person transmission from nasopharynx, the primary reservoir for pneumococcus, it also contributes to high mortality rates, creating a bottleneck that hampers widespread bacterial dissemination, thus acting as a double-edged sword.
View Article and Find Full Text PDFThe use of radiosensitizers in clinical radiotherapy is limited by systemic toxicity. The biopolymeric, biodegradable, injectable liposome-in-gel-paclitaxel (LG-PTX) system was developed for regional delivery of the radiosensitizer paclitaxel (PTX), and its efficacy was evaluated with concurrent fractionated radiation. LG-PTX is composed of nano-sized drug-loaded fluidizing liposomes, which are incorporated into a porous biodegradable gellan hydrogel.
View Article and Find Full Text PDFInstillations of therapeutic agents into the urinary bladder have limited efficacy due to drug washout and inadequate attachment to and penetration into the bladder wall. Instilled nanoparticles alone have low stability and high susceptibility to washout, while gel-based systems are difficult to administer and retain. To overcome disadvantages of current technologies, a biodegradable, in situ-gelling liposome-in-gel (LP-Gel) system was developed for instillation into the bladder, composed of nano-sized, fluidizing liposomes incorporated into a "smart" biopolymeric, urine-triggered hydrogel.
View Article and Find Full Text PDFWhile Human Immunodeficiency Virus (HIV) infections are reducing in incidence with the advent of Highly Active Anti-retroviral Therapy (HAART), there remain a number of challenges including the existence of reservoirs, drug resistance and anatomical barriers to antiretroviral therapy. To overcome these, smart nanoparticles with stimuli responsive release are proposed for delivery of anti-retroviral agents. The paper highlights the strategic similarities between the design of smart antiretroviral nanocarriers and those optimized for cancer chemotherapy.
View Article and Find Full Text PDFWe describe the development and evaluation of a hybrid lipopolymeric system comprising carboxymethyl chitosan (CMC), covalently tethered to phosphatidylethanolamine units on the surface of lipid nanovesicles, for oral delivery of paclitaxel. The bioploymer is intended to act as a blanket, thereby shielding the drug from harsh gastrointestinal conditions, whereas the lipid nanovesicle ensures high encapsulation efficiency of paclitaxel and its passive targeting to tumor. CMC-tethered nanovesicles (LN-C-PTX) in the size range of 200-300 nm improved the gastrointestinal resistance and mucoadhesion properties as compared with unmodified lipid nanovesicles (LN-PTX).
View Article and Find Full Text PDF