Publications by authors named "Prabu Sivaprasath"

Midgut receptors have been recognized as the major mechanism of resistance to Cry proteins in lepidopteran larvae, while there is a dearth of data on the role of hemocyte's response to Cry intoxication and resistance development. We aimed at investigating the role of circulating hemocytes in the intoxication of Cry1F toxin in larvae from susceptible (ACB-BtS) and resistant (ACB-FR) strains of the Asian corn borer (ACB), . Transcriptome and proteome profiling identified genes and proteins involved in immune-related (tetraspanin and C-type lectins) and detoxification pathways as significantly up-regulated in the hemocytes of Cry1F treated ACB-FR.

View Article and Find Full Text PDF
Article Synopsis
  • Phenoloxidase (PO) is a crucial enzyme in the immune system that helps combat various pathogens, while Vip3Aa19 is a protein by Bacillus thuringiensis (Bt) that effectively targets insects.
  • The study identified two PO genes, PAE and PO2, in fall armyworms, showing their expression increases significantly when exposed to Vip3Aa19 toxin, highlighting a strong immune response.
  • The research suggests that the PO2 gene is particularly critical for the survival of the insects, as silencing it with dsRNA makes them much more vulnerable to the toxin, indicating a direct link between PO activity and defense against Bt toxins.
View Article and Find Full Text PDF

Background: Conogethes pinicolalis has been thought as a Pinaceae-feeding variant of the yellow peach moth, Conogethes punctiferalis. The divergence of C. pinicolalis from the fruit-feeding moth C.

View Article and Find Full Text PDF

Bacillus thuringiensis Cry and Vip proteins are highly effective at controlling agricultural pests and could be used in pyramided transgenic crops. However, the molecular mechanism underlying the Cry1Ah and Vip3Aa19 synergistic interaction has never been investigated at the molecular level in Yellow peach moth (YPM) Conogethes punctiferalis. Binding affinity and synergism of Cry1Ah and Vip3Aa19 proteins with ABC transporter subfamily C receptors ABCC1, ABCC2 and ABCC3 proteins from the midgut of YPM larva by using surface plasmon resonance (SPR) and pull-down assays.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the unique role of the GOBP2 protein in the yellow peach moth's ability to recognize host plant odors, contrasting it with GOBP1.
  • Researchers utilized the CRISPR-Cas9 system to evaluate the functions of these proteins, discovering that GOBP2 knockout had a significantly greater impact on olfactory sensitivity compared to GOBP1 knockout.
  • Additionally, experiments showed that GOBP2 physically interacts with certain chemosensory proteins, reinforcing its critical role in odorant perception, while GOBP1 shows a more limited interaction profile.
View Article and Find Full Text PDF

Yellow Peach Moth (YPM), (Guenée), is one of the most destructive maize pests in the Huang-Huai-Hai summer maize region of China. Transgenic Bacillus thuringiensis (Bt) maize provides an effective means to control this insect pest in field trials. However, the establishment of Bt resistance to target pests is endangering the continued success of Bt crops.

View Article and Find Full Text PDF

Evolution of insect resistance to Bt toxins challenges the use of Cry toxins to control agricultural pests. In lepidopterans, Cry toxin affinity towards multiple midgut epithelial receptors has become a matter of dispute. Cry1Ah toxin-binding proteins were identified in the larval midgut of susceptible (ACB-BtS) and resistant (ACB-AhR) strains of the Asian corn borer (ACB).

View Article and Find Full Text PDF

Background: Conogethes pinicolalis (Lepidoptera: Crambidae), is similar to Conogethes punctiferalis (yellow peach moth) and its host plant is gymnosperms, especially for masson pine. So far, less literature was reported on this pest. In the present study, we sequenced and characterized the antennal transcriptomes of male and female C.

View Article and Find Full Text PDF

Phenoloxidase (PO) is a crucial enzyme in the Arthropods melanization process, in which synthesized melanin rapidly acts at the site of injury and infection. In this study, we observed significant changes in humoral and cellular responses after exposing susceptible and resistant strains to a sub-lethal concentration of Cry1Ah toxin. Based on STRING v 11.

View Article and Find Full Text PDF

Bacillus thuringiensis produces insecticidal Cry toxins used in the control of multiple insect pests. Evolution of insect resistance to Bt toxins endangers the use of Cry toxins for pest control. Analysis of the Cry1Ah-binding proteins from brush border membrane vesicles (BBMV) of Ostrinia furnacalis, Asian corn borer (ACB) from the Cry1Ah-resistant (ACB-AhR) and susceptible (ACB-BtS) strains was performed by an improved pull down assay that includes coupling Cry1Ah to NHS-activated Sepharose combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS).

View Article and Find Full Text PDF

Conogethes pinicolalis (Lepidoptera: Crambidae), a major pine pest, possesses a sensitive olfactory system to locate its host. Pheromone binding proteins (PBPs) and general odorant binding proteins (GOBPs) are two types of proteins involved in the process. In this work, we used phylogenetic analysis, gene expression, fluorescence competitive binding assay, and molecular docking to characterize PBPs and GOBPs in C.

View Article and Find Full Text PDF

Insects recognize odorous compounds using sensory neurons organized in olfactory sensilla. The process odor detection in insects requires an ensemble of proteins, including odorant binding proteins, olfactory receptors, and odor degrading enzymes; each of them are encoded by multigene families. Most functional proteins seem to be broadly tuned, responding to multiple chemical compounds with different, but mostly quite similar structures.

View Article and Find Full Text PDF

The oriental armyworm (OAW), (Walker), is a destructive pest of agricultural crops in Asia and Australia. Commercialized Bt crops have performed very well against their target pests; however, very few studies have been done on the susceptibility of OAW to Bt toxins in either sprays or expressed in Bt crops. In this work, we evaluated the toxicities of Cry1Ab, Cry1Ac, Cry1Ah, Cry1Fa, Cry2Aa, Cry2Ab, Cry1Ie, Vip3Aa19, Vip3Aa16, and Vip3Ca against OAW neonate larvae, as well as the interaction between Cry and Vip toxins.

View Article and Find Full Text PDF