Aptamers are a class of molecular recognition elements that exhibit high binding affinity and specificity against their respective targets. In view of the many advantages aptamers harbor over their counterpart antibodies, we were impelled to isolate an RNA aptamer against progesterone receptor, particularly its DNA binding domain. A total of eight SELEX cycles were executed against the recombinant Progesterone Receptor DNA-binding domain (PR DBD).
View Article and Find Full Text PDFHuman Pituitary Tumour Transforming Gene 1 (PTTG1) is an oncoprotein involved in maintaining chromosome stability and acts as a biomarker for a panel of cancers. In this study, we endeavoured to generate an RNA aptamer against PTTG1. The RNA aptamer, SECURA-3 has an estimated equilibrium dissociation constant of 16.
View Article and Find Full Text PDFBackground And Objectives: DNA polymerase is an enzyme that exhibits the lowest error rate in the 3' to 5' exonuclease (proofreading) activity during DNA synthesis in Polymerase Chain Reactions (PCRs). This study was aimed to express and purify DNA polymerase in a bacterial expression system under a simple purification method.
Materials And Methods: polymerase gene sequence, derived from genomic DNA, was cloned and overexpressed in BL21 (DE3) pLysS.
Nasopharyngeal carcinoma (NPC) is a type of cancer endemic in Asia, including Malaysia, Southern China, Hong Kong and Taiwan. Treatment resistance, particularly in recurring cases, remains a challenge. Thus, studies to develop novel therapeutic agents are important.
View Article and Find Full Text PDFSpheroids have been shown to recapitulate the tumour in vivo with properties such as the tumour microenvironment, concentration gradients, and tumour phenotype. As such, it can serve as a platform for determining the growth and invasion behaviour pattern of the cancer cells as well as be utilised for drug sensitivity assays; capable of exhibiting results that are closer to what is observed in vivo compared to two-dimensional (2D) cell culture assays. This study focused on establishing a three-dimensional (3D) cell culture model using the Nasopharyngeal Carcinoma (NPC) cell line, HK1 and analysing its growth and invasion phenotypes.
View Article and Find Full Text PDF