Publications by authors named "Prabu S"

The widespread use of statins for cardiovascular diseases has unveiled a new subset of inflammatory myopathy, immune-mediated necrotizing myopathy (IMNM). We describe below an unusual case of anti-3-hydroxy-3-methylglutaryl-coenzyme A reductase (anti-HMGCR) myopathy. A 64-year-old male individual with type 2 diabetes, hyperlipidemia, and coronary artery disease presented with progressive proximal muscle weakness and pain for 3 months.

View Article and Find Full Text PDF

Background: Metabolic dysfunction-associated steatotic liver disease (MASLD), previously termed as nonalcoholic fatty liver disease (NAFLD) is a hepatic manifestation of obesity and metabolic syndrome. It is mainly caused by insulin resistance. With the increased risk of visceral obesity in South Asians, the prevalence of MASLD is on the rise.

View Article and Find Full Text PDF

The increasing accumulation of waste polymethyl methacrylate (PMMA) plastics presents a significant environmental challenge, while the demand for renewable energy sources continues to rise. Thermochemical recycling is a prospective technique for converting waste plastics into high-value chemicals, both economically and environmentally. In this work, the catalytic pyrolysis of waste PMMA plastics over LaCaMgAlO nanosheets (NSs) catalyst is being investigated for its potential to produce hydrogen and carbon nanotubes (CNTs) in a two-stage fixed-bed reactor.

View Article and Find Full Text PDF

Aptamers are a class of molecular recognition elements that exhibit high binding affinity and specificity against their respective targets. In view of the many advantages aptamers harbor over their counterpart antibodies, we were impelled to isolate an RNA aptamer against progesterone receptor, particularly its DNA binding domain. A total of eight SELEX cycles were executed against the recombinant Progesterone Receptor DNA-binding domain (PR DBD).

View Article and Find Full Text PDF

Supercapacitor electrodes (SCs) of carbon-based materials with flexible structures and morphologies have demonstrated excellent electrical conductivity and chemical stability. Herein, a clean and cost-effective method for producing a 3D self-doped honeycomb-like carbonaceous material with KOH activation from bio-waste oyster shells (BWOSs) is described. A remarkable performance was achieved by the excellent hierarchical structured carbon (HSC-750), which has a large surface area and a reasonably high packing density.

View Article and Find Full Text PDF

Electrodes and electroactive materials are crucial components in the development of supercapacitors due to their geometric properties. In this study, bimetal-organic frameworks (Bi-MOFs, ZIF-8@ZIF-67) were utilized as electrode materials for a high-performance hybrid supercapacitor (HSC) by designing a novel synthesis of metallic carbonate hydroxide/oxides. In particular, the Bi-MOFs function as a sacrificial precursor in the synthesis of hollow NiMn(CO)·0·.

View Article and Find Full Text PDF

Coffee residues (CRs) were gasified using a laboratory-scale fluidized bed gasifier with an air/steam mixture as the carrier gas. The gasification was conducted at an equivalence ratio (ER) of 0.3, and different operation temperatures (700, 800, and 900 °C) and steam-to-biomass (S/B) ratios (0, 0.

View Article and Find Full Text PDF

A new set of multi-donor [ferrocene (D) and methoxyphenyl (D')] conjugated D-D'-π-A based dyes [Fc-(OCH-Ph)C[double bond, length as m-dash]CH-CH[double bond, length as m-dash]CN-R{R[double bond, length as m-dash]COOH (1) and CH-COOH (2)}] were synthesized as sensitizers for dye-sensitized solar cell (DSSC) applications. These dyes were characterized with the aid of analytical and spectroscopic techniques such as FT-IR, HR-Mass, and H and C NMR. The thermal stability of the dyes 1 and 2 were investigated using thermogravimetric analysis (TGA) and was found to be stable around 180 °C for dye 1 and 240 °C for dye 2.

View Article and Find Full Text PDF

Midgut receptors have been recognized as the major mechanism of resistance to Cry proteins in lepidopteran larvae, while there is a dearth of data on the role of hemocyte's response to Cry intoxication and resistance development. We aimed at investigating the role of circulating hemocytes in the intoxication of Cry1F toxin in larvae from susceptible (ACB-BtS) and resistant (ACB-FR) strains of the Asian corn borer (ACB), . Transcriptome and proteome profiling identified genes and proteins involved in immune-related (tetraspanin and C-type lectins) and detoxification pathways as significantly up-regulated in the hemocytes of Cry1F treated ACB-FR.

View Article and Find Full Text PDF
Article Synopsis
  • Phenoloxidase (PO) is a crucial enzyme in the immune system that helps combat various pathogens, while Vip3Aa19 is a protein by Bacillus thuringiensis (Bt) that effectively targets insects.
  • The study identified two PO genes, PAE and PO2, in fall armyworms, showing their expression increases significantly when exposed to Vip3Aa19 toxin, highlighting a strong immune response.
  • The research suggests that the PO2 gene is particularly critical for the survival of the insects, as silencing it with dsRNA makes them much more vulnerable to the toxin, indicating a direct link between PO activity and defense against Bt toxins.
View Article and Find Full Text PDF

Background: Conogethes pinicolalis has been thought as a Pinaceae-feeding variant of the yellow peach moth, Conogethes punctiferalis. The divergence of C. pinicolalis from the fruit-feeding moth C.

View Article and Find Full Text PDF

Bacillus thuringiensis Cry and Vip proteins are highly effective at controlling agricultural pests and could be used in pyramided transgenic crops. However, the molecular mechanism underlying the Cry1Ah and Vip3Aa19 synergistic interaction has never been investigated at the molecular level in Yellow peach moth (YPM) Conogethes punctiferalis. Binding affinity and synergism of Cry1Ah and Vip3Aa19 proteins with ABC transporter subfamily C receptors ABCC1, ABCC2 and ABCC3 proteins from the midgut of YPM larva by using surface plasmon resonance (SPR) and pull-down assays.

View Article and Find Full Text PDF

A new ferrocene appended linear donor-π-acceptor (D-π-A) type 1,8-naphthalimide chromophores [FcPhNap-n-butyl (1) and Fc(Ph)Nap-n-butyl (2)] have been synthesized and characterized using various analytical and spectroscopic techniques. The chromophores 1 and 2 show the one-electron transfer process, which was examined through cyclic voltammetric (CV) method. The solvatochromic studies show red shift by increasing the solvent polarity from non-polar to polar for both the chromophores 1 and 2, due to the better stabilization of the more polarized excited state than the ground state in the polar solvent.

View Article and Find Full Text PDF

Normal T cells express high levels of B-cell lymphoma-2 (BCL2) protein, and data regarding BCL2 expression status and its diagnostic utility in T-cell lymphoma are scarce. We evaluated BCL2 expression in a series of mature T-cell lymphoproliferations (TCLs) including indolent and more recently recognized entities (follicular helper T-cell [TFH] lymphomas). Sixty-six neoplastic biopsies (60 patients) representing mature nodal, extranodal, and leukemia T-cell neoplasms were collected from three institutes (2 US and 1 Japan) and were compared with reactive T cells in 8 benign tissues/blood and 9 T cell-rich B-cell proliferations.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the unique role of the GOBP2 protein in the yellow peach moth's ability to recognize host plant odors, contrasting it with GOBP1.
  • Researchers utilized the CRISPR-Cas9 system to evaluate the functions of these proteins, discovering that GOBP2 knockout had a significantly greater impact on olfactory sensitivity compared to GOBP1 knockout.
  • Additionally, experiments showed that GOBP2 physically interacts with certain chemosensory proteins, reinforcing its critical role in odorant perception, while GOBP1 shows a more limited interaction profile.
View Article and Find Full Text PDF

The challenges and difficulties associated with conventional drug delivery systems have led to the emergence of novel, advanced targeted drug delivery systems. Therapeutic drug delivery of proteins and peptides to the lungs is complicated owing to the large size and polar characteristics of the latter. Nevertheless, the pulmonary route has attracted great interest today among formulation scientists, as it has evolved into one of the important targeted drug delivery platforms for the delivery of peptides, and related compounds effectively to the lungs, primarily for the management and treatment of chronic lung diseases.

View Article and Find Full Text PDF

The novel catalyst with yolk-shell SiO NiMo/SiO spheres immobilized by zeolitic imidazolate framework (ZIF-67) materials has been successfully prepared. The experimental results indicated that the prepared catalyst exhibits superior performance for hydrogen generation from Formic acid (FA) dehydrogenation without any additives at low temperatures. The catalytic performances of the NiMo/ZIF-67@SiO yolk-shell increased with Ni addition ratio increasing.

View Article and Find Full Text PDF

Yellow Peach Moth (YPM), (Guenée), is one of the most destructive maize pests in the Huang-Huai-Hai summer maize region of China. Transgenic Bacillus thuringiensis (Bt) maize provides an effective means to control this insect pest in field trials. However, the establishment of Bt resistance to target pests is endangering the continued success of Bt crops.

View Article and Find Full Text PDF

In 21 st century, nanomedicine has turned out to be an emergent modulus operation for the diagnosis and treatment for cancer. The current study includes the Green synthesis of zinc oxide nanoparticles (ZnO NPs) from the leaves of and interpretation of its anticancer activity. Synthesized ZnO NPs were investigated by UV-vis, FTIR, particle size analysis, SEM, XRD and its anticancer activity using A549 cell lines.

View Article and Find Full Text PDF

A chiral separation method coupled with capillary electrophoresis (CE) analysis for ketoconazole and miconazole enantiomers using chiral selectors such as β-cyclodextrin (β-CD) and hydroxypropyl-β-CD (HP-β-CD) was developed in this study, which included the optimisation, validation and application of the method on the antifungal cream samples. The formation of inclusion complex between the hosts (β-CD and HP-β-CD) and guests (ketoconazole and miconazole) were compared and analysed using ultraviolet-visible spectrophotometry, nuclear magnetic resonance (NMR) spectroscopy and molecular docking methods. Results from the study showed that in a concentration that ranged between 0.

View Article and Find Full Text PDF

Human Pituitary Tumour Transforming Gene 1 (PTTG1) is an oncoprotein involved in maintaining chromosome stability and acts as a biomarker for a panel of cancers. In this study, we endeavoured to generate an RNA aptamer against PTTG1. The RNA aptamer, SECURA-3 has an estimated equilibrium dissociation constant of 16.

View Article and Find Full Text PDF

The behavior of the inclusion behavior of guanosine (GU) with beta-cyclodextrin (β-CD) in the liquid, solid and virtual state were investigated. The absorption and fluorescence spectral were used to determine the inclusion behavior in liquid state. FT-IR, NMR, TGA, DSC, PXRD and FESEM techniques were used to investigate the inclusion behavior in solid-state, meanwhile the virtual state studies are done by molecular docking.

View Article and Find Full Text PDF

Inclusion complexes of R-ketoprofen and S-ketoprofen enantiomers with β-cyclodextrin (β-CD) in aqueous solution were studied using various spectroscopic techniques such as Raman, FTIR, UV and fluorescence. The different relative intensities and characteristic band shifts of the two enantiomers from Raman spectra suggests different interaction when complexed with β-CD. Raman experiments revealed a noticeable diminishing of the CC vibration and ring deformation, which indicate the embedding of ketoprofen inside the β-CD cavity.

View Article and Find Full Text PDF

Evolution of insect resistance to Bt toxins challenges the use of Cry toxins to control agricultural pests. In lepidopterans, Cry toxin affinity towards multiple midgut epithelial receptors has become a matter of dispute. Cry1Ah toxin-binding proteins were identified in the larval midgut of susceptible (ACB-BtS) and resistant (ACB-AhR) strains of the Asian corn borer (ACB).

View Article and Find Full Text PDF