Background: The association between cancer and venous thromboembolism (VTE) is well-established with cancer patients accounting for approximately 20% of all VTE incidents. In this paper, we have performed a comparison of machine learning (ML) methods to traditional clinical scoring models for predicting the occurrence of VTE in a cancer patient population, identified important features (clinical biomarkers) for ML model predictions, and examined how different approaches to reducing the number of features used in the model impact model performance.
Methods: We have developed an ML pipeline including three separate feature selection processes and applied it to routine patient care data from the electronic health records of 1910 cancer patients at the University of California Davis Medical Center.
Objective: To address challenges in large-scale electronic health record (EHR) data exchange, we sought to develop, deploy, and test an open source, cloud-hosted app "listener" that accesses standardized data across the SMART/HL7 Bulk FHIR Access application programming interface (API).
Methods: We advance a model for scalable, federated, data sharing and learning. Cumulus software is designed to address key technology and policy desiderata including local utility, control, and administrative simplicity as well as privacy preservation during robust data sharing, and artificial intelligence (AI) for processing unstructured text.
Objective: To address challenges in large-scale electronic health record (EHR) data exchange, we sought to develop, deploy, and test an open source, cloud-hosted app 'listener' that accesses standardized data across the SMART/HL7 Bulk FHIR Access application programming interface (API).
Methods: We advance a model for scalable, federated, data sharing and learning. Cumulus software is designed to address key technology and policy desiderata including local utility, control, and administrative simplicity as well as privacy preservation during robust data sharing, and AI for processing unstructured text.
Objectives: The purpose is to identify demographic characteristics associated with a quantity not sufficient (QNS) sweat collection in infants 3 months or younger.
Methods: History of premature birth, infant race and sex, gestational age at delivery, and weight of the infant were compared with QNS collection.
Results: Of 221 sweat collections from 197 infants, 25 were QNS.