Background: Human immunoglobulin G (IgG) plays an important role in mediating protective immune responses to malaria. Although human serum immunoglobulin A (IgA) is the second most abundant class of antibody in the circulation, its contribution, if any, to protective responses against malaria is not clear.
Results: To explore the mechanism(s) by which IgA may mediate a protective effect, we generated fully human IgA specific for the C-terminal 19-kDa region of Plasmodium falciparum merozoite surface protein 1 (PfMSP1 19), a major target of protective immune responses.
Use of paramagnetic particles to isolate molecules or cells from complex media is well established. Typically, particles are manufactured and coated with a biological molecule that confers specific biorecognition. Incubation of particles with sample and exposure to magnetic fields isolates the species of interest.
View Article and Find Full Text PDFRecent pioneering advances in understanding how plants, insects and worms eliminate pathogens has led to the realization that innate immunity plays a vital role in protecting humans from infection. This comprehensive review examines the molecules involved in innate immune responses, how they act to control parasites and if their engagement can explain many immune features characteristic of parasitic infections.
View Article and Find Full Text PDFHuman immunoglobulin A (IgA) mediates protective effector mechanisms through interaction with specific cellular Fc receptors (Fc alpha RI). Two IgA Fc interdomain loops (Leu257-Leu258 in the CH2 domain and Pro440-Phe443 in the CH3 domain) have previously been identified as critical for binding to Fc alpha RI. On the receptor, the interaction site for IgA has been localized to the EC1 domain.
View Article and Find Full Text PDF