Am J Physiol Cell Physiol
December 2020
We have reported that the reduction in plasma membrane cholesterol could decrease cellular Na/K-ATPase α1-expression through a Src-dependent pathway. However, it is unclear whether cholesterol could regulate other Na/K-ATPase α-isoforms and the molecular mechanisms of this regulation are not fully understood. Here we used cells expressing different Na/K-ATPase α isoforms and found that membrane cholesterol reduction by U18666A decreased expression of the α1-isoform but not the α2- or α3-isoform.
View Article and Find Full Text PDFBackground Renal artery stenosis is a common cause of renal ischemia, contributing to the development of chronic kidney disease. To investigate the role of local CD40 expression in renal artery stenosis, Goldblatt 2-kidney 1-clip surgery was performed on hypertensive Dahl salt-sensitive rats (S rats) and genetically modified S rats in which CD40 function is abolished (). Methods and Results Four weeks following the 2-kidney 1-clip procedure, rats demonstrated significantly reduced blood pressure and renal fibrosis in the ischemic kidneys compared with S rat controls.
View Article and Find Full Text PDFInsulin resistance and obesity are associated with reduced gonadotropin-releasing hormone (GnRH) release and infertility. Mice that lack insulin receptors (IRs) throughout development in both neuronal and non-neuronal brain cells are known to exhibit subfertility due to hypogonadotropic hypogonadism. However, attempts to recapitulate this phenotype by targeting specific neurons have failed.
View Article and Find Full Text PDFBackground And Aims: Recent in vitro studies have showed that in macrophages, deletion of the non-selective Ca-permeable channel TRPC3 impairs expression of the osteogenic protein BMP-2. The pathophysiological relevance of this effect in atherosclerotic plaque calcification remains to be determined.
Methods: We used Ldlr mice with macrophage-specific loss of TRPC3 (MacTrpc3/Ldlr) to examine the effect of macrophage Trpc3 on plaque calcification and osteogenic features in advanced atherosclerosis.
Mechanisms mediating vascular calcification recapitulate osteogenic processes encompassing bone formation and imply participation of bone related proteins such as bone morphogenetic protein-2 (BMP-2). Macrophages are amongst the cells that contribute to vascular ossification by releasing cytokines that induce an osteogenic program in vascular smooth muscle cells, and also by becoming themselves osteoclast-like cells. In inflammatory vascular disease, the macrophage population in the vascular wall is diverse, with the M1 or inflammatory, and the M2 or anti-inflammatory macrophage types being dominant.
View Article and Find Full Text PDFIn previous work we reported that ApoeKO mice transplanted with bone marrow cells deficient in the Transient Receptor Potential Canonical 3 (TRPC3) channel have reduced necrosis and number of apoptotic macrophages in advanced atherosclerotic plaques. Also, in vitro studies with polarized macrophages derived from mice with macrophage-specific loss of TRPC3 showed that M1, but not M2 macrophages, deficient in Trpc3 are less susceptible to ER stress-induced apoptosis than Trpc3 expressing cells. The questions remained (a) whether the plaque phenotype in transplanted mice resulted from a genuine effect of Trpc3 on macrophages, and (b) whether the reduced necrosis and macrophage apoptosis in plaques of these mice was a manifestation of the selective effect of TRPC3 on apoptosis of M1 macrophages previously observed in vitro.
View Article and Find Full Text PDFEndoplasmic reticulum (ER) stress is a prominent mechanism of macrophage apoptosis in advanced atherosclerotic lesions. Recent studies from our laboratory showed that advanced atherosclerotic plaques in Apoe(-/-) mice with bone marrow deficiency of the calcium-permeable channel Transient Receptor Potential Canonical 3 (TRPC3) are characterized by reduced areas of necrosis and fewer apoptotic macrophages than animals transplanted with Trpc3(+/+) bone marrow. In vitro, proinflammatory M1 but not anti-inflammatory M2 macrophages derived from Trpc3(-/-)Apoe(-/-) animals exhibited reduced ER stress-induced apoptosis.
View Article and Find Full Text PDF