Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, memory loss, and impaired daily functioning. While there is currently no cure for AD, several pharmacotherapeutic targets and management strategies have been explored. Additionally, traditional medicinal plants have gained attention for their potential role in AD management.
View Article and Find Full Text PDFMillions of people worldwide are currently afflicted with neurologic conditions like a seizure, depression, stress, Alzheimer's disease, Parkinson's disease, and Huntington's disease. However, the precise etiopathology of these diseases is still unknown. Substantial studies are being conducted to discover more treatments against these disorders because many patients do not experience the therapeutic benefits that would be expected from using existing pharmaceutical strategies.
View Article and Find Full Text PDFA novel series of 5,6-diphenyl-1,2,4-triazine-3-thiol derivatives were designed, synthesized, and screened for their inhibitory potential against COX-2 and 5-LOX enzymes. The compounds from the series have shown moderate to excellent inhibitory potential against both targets. Compound 6k showed the inhibitions against COX-2 (IC = 0.
View Article and Find Full Text PDFThe cholinesterases are essential targets implicated in the pathogenesis of Alzheimer's disease (AD). In the present study, virtual screening and molecular docking are performed to identify the potential hits. Docking-post processing (DPP) and pose filtration protocols against AChE and BChE resulted in three hits (AW00308, HTS04089, and JFD03947).
View Article and Find Full Text PDFEur J Med Chem
December 2019
The diverse nature of Alzheimer's disease (AD) has prompted researchers to develop multi-functional agents. Herein, we have designed and synthesized molecular hybrids of 2-pyridylpiperazine and 5-phenyl-1,3,4-oxadiazoles. Biological activities of synthesized compounds suggested significant and balanced inhibitory potential against target enzymes.
View Article and Find Full Text PDFMultitargeted hybrids of -benzylpiperidine and substituted 5-phenyl-1,3,4-oxadiazoles were designed, synthesized, and evaluated against Alzheimer's disease (AD). Tested compounds exhibited moderate to excellent inhibition against human acetylcholinesterase (hAChE), butyrylcholinesterase (hBChE), and beta-secretase-1 (hBACE-1). The potential leads and exhibited balanced inhibitory profiles against all the targets, with a substantial displacement of propidium iodide from the peripheral anionic site of hAChE.
View Article and Find Full Text PDFNovel hybrids N-(4-phenoxybenzyl)aniline were designed, synthesized, and evaluated for their potential AChE inhibitory activity along with antioxidant potential. The inhibitory potential (IC) of synthesized analogs was evaluated against human cholinesterases (hAChE and hBChE) using Ellman's method. Among all the tested compounds, 42 with trimethoxybenzene substituent showed maximum hAChE inhibition with the competitive type of enzyme inhibition (IC = 1.
View Article and Find Full Text PDFThe novel hybrids bearing 4-aminopyridine (4-AP) tethered with substituted 1,3,4-oxadiazole nucleus were designed, synthesized, and evaluated for their potential AChE inhibitory property along with significant antioxidant potential. The inhibitory potential (IC) of synthesized analogs was evaluated against human cholinesterases (hAChE and hBChE) using Ellman's method. Among all the compounds, 9 with 4-hydroxyl substituent showed maximum hAChE inhibition with the non-competitive type of enzyme inhibition (IC = 1.
View Article and Find Full Text PDFNovel hybrids bearing a 2-aminopyrimidine (2-AP) moiety linked to substituted 1,3,4-oxadiazoles were designed, synthesized and biologically evaluated. Among the developed compounds, 28 noncompetitively inhibited human acetylcholinesterase (hAChE; pIC = 6.52; Ki = 0.
View Article and Find Full Text PDFThe multitarget-directed strategy offers an effective and promising paradigm to treat the complex neurodegenerative disorder, such as Alzheimer's disease (AD). Herein, a series of N-benzylpiperidine analogs (17-31 and 32-46) were designed and synthesized as multi-functional inhibitors of acetylcholinesterase (AChE) and β-secretase-1 (BACE-1) with moderate to excellent inhibitory activities. Among the tested inhibitors, 25, 26, 40, and 41 presented the most significant and balanced inhibition against both the targets.
View Article and Find Full Text PDFA series of novel piperazine tethered biphenyl-3-oxo-1,2,4-triazine derivatives were designed, and synthesized. Amongst the synthesized analogs, compound 6g showed significant non-competitive inhibitory potential against acetylcholinesterase (AChE, IC; 0.2 ± 0.
View Article and Find Full Text PDFAD is a progressive neurodegenerative disorder and a leading cause of dementia in an aging population worldwide. The enormous challenge which AD possesses to global healthcare makes it as urgent as ever for the researchers to develop innovative treatment strategies to fight this disease. An in-depth analysis of the extensive available data associated with the AD is needed for a more comprehensive understanding of underlying molecular mechanisms and pathophysiological pathways associated with the onset and progression of the AD.
View Article and Find Full Text PDFBased on the Gaussian-based quantitative structure-activity relationship (QSAR) and virtual screening (VS) processes, some promising acetylcholinesterase inhibitors (AChEIs) having antioxidant potential were designed synthesized, characterized, and evaluated for their ability to enhance learning and memory. The synthesized phenyl benzoxazole derivatives exhibited significant antioxidant potential and AChE inhibitory activity, whereas the antioxidant potential of compound 34 (49.6%) was observed significantly better than standard donepezil (<10%) and parallel to ascorbic acid (56.
View Article and Find Full Text PDFSome novel indolizine derivatives were synthesized by bioisosteric modification of imidazo[1,2-a]pyridine for anti-inflammatory activity. The physicochemical characterization and structure of compounds were elucidated by state of the art spectroscopic technique. Induced fit docking was performed for initial screening to elucidate the interactions with corresponding amino acids of cyclooxygenase (COX-1, COX-2) and lipoxygenase (LOX) enzymes.
View Article and Find Full Text PDFSeries of some 3,5-dimethoxy-N-methylenebenzenamine and 4-(methyleneamino)benzoic acid derivatives comprising of N-methylenebenzenamine nucleus were designed, synthesized, characterized, and assessed for their acetylcholinesterase (AChE), butyrylcholinesterase (BChE) inhibitory, and antioxidant activity thereby improving learning and memory in rats. The IC values of all the compound along with standard were determined on AChE and BChE enzyme. The free radical scavenging activity was also assessed by in vitro DPPH (2,2-diphenyl-1-picryl-hydrazyl) and hydrogen peroxide radical scavenging assay.
View Article and Find Full Text PDF