Photodynamic therapy (PDT) effectively kills cancer cells and initiates immune responses that promote anticancer effects locally and systemically. Primarily developed for local and regional cancers, the potential of PDT for systemic antitumor effects [in situ photo-vaccination (ISPV)] remains underexplored. This study investigates: (1) the comparative effectiveness of paclitaxel (PTX) prodrug [Pc-(L-PTX)] for PDT and site-specific PTX effects versus its pseudo-prodrug [Pc-(NCL-PTX)] for PDT combined with checkpoint inhibitors; (2) mechanisms driving systemic antitumor effects; and (3) the prophylactic impact on preventing cancer recurrence.
View Article and Find Full Text PDFPoly(lactide--glycolide) (PLGA) is a biocompatible and biodegradable copolymer that has gained high acceptance in biomedical applications. In the present study, PLGA ( = 13,900) was synthesized by ring-opening polymerization in the presence of a biocompatible zinc-proline initiator through a green route. Irinotecan (Ir) loaded with efficient PLGA core-lipid shell hybrid nanocarriers (lipomers, LPs) were formulated with 1,2-distearoyl--glycero-3-phosphoethanolamine and 1,2-distearoyl--glycero-3-phosphoethanolamine--[amino (polyethylene glycol)-2000] (DSPE-PEG-2000), using soya lecithin, by a nanoprecipitation method, and the fabricated LPs were designated as P-DSPE-Ir and P-DSPE-PEG-Ir, respectively.
View Article and Find Full Text PDFPotential of salivary microbiota as a non-invasive diagnostic tool for various diseases are explained in the present review. Traditional diagnostic methods rely on blood, which has limitations in terms of collection and biomarker specificity. We discuss the concept of normal flora and how disruptions in oral microbiota can be indicative of diseases.
View Article and Find Full Text PDFSkin is the largest organ of the human body, as it protects the body from the external environment. Nowadays, skin diseases and skin problems are more common, and millions of people are affected daily. Skin diseases are due to numerous infectious pathogens or inflammatory conditions.
View Article and Find Full Text PDFA poly(d,l-lactide--glycolide) (PLGA) copolymer was synthesized using the ring-opening polymerization of d,l-lactide and glycolide monomers in the presence of zinc proline complex in bulk through the green route and was well characterized using attenuated total reflectance-Fourier transform infrared, H and C nuclear magnetic resonance, gel permeation chromatography, differential scanning calorimetry, X-ray diffraction, matrix-assisted laser desorption/ionization time-of-flight, etc. Furthermore, PLGA-conjugated biotin (PLGA-B) was synthesized using the synthesized PLGA and was employed to fabricate nanoparticles for irinotecan (Ir) delivery. These nanoparticles (PLGA-NP-Ir and PLGA-B-NP-Ir) were tested for physicochemical and biological characteristics.
View Article and Find Full Text PDFWorldwide, 40 to 50% of women suffer from reproductive tract infections. Most of these infections are mixed infections, are recurrent and difficult to treat with antimicrobials or antifungals alone. For symptomatic relief of infections, oral antimicrobial therapy must be combined with topical therapy.
View Article and Find Full Text PDFFlavonoids and polyphenolic compounds play a key role in wound healing cycle modulation. Propolis, a natural bee product, has been widely reported as an enriched source of polyphenols and flavonoids as important chemical constituents and for its wound healing potential. The goal of this study was to develop and characterize a propolis-based polyvinyl alcohol (PVA) hydrogel composition with wound healing potential.
View Article and Find Full Text PDFEudragit, synthesized by radical polymerization, is used for enteric coating, precise temporal release, and targeting the entire gastrointestinal system. Evonik Healthcare Germany offers different grades of Eudragit. The ratio of methacrylic acid to its methacrylate-based monomers used in the polymerization reaction defines the final product's characteristics and consequently its potential range of applications.
View Article and Find Full Text PDFThe surface drying process is an important technology in the pharmaceutical, biomedical, and food industries. The final stage of formulation development (i.e.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
January 2023
The progress in new delivery systems for active ingredients has boosted the dermopharmaceutical and cosmetic fields by allowing formulations to display enhanced skin permeation capabilities. Cyclodextrins (CDs) are cyclic oligosaccharides able to form host-guest inclusion complexes with guest active molecules, resulting in improved physicochemical properties of such molecules. The incorporation of CDs in dermopharmaceutical and cosmetics formulations has received much attention since the late 1970 s by enhancing modulation of the passage through the skin and vectorization into the target site while simultaneously offering a biocompatible delivery system.
View Article and Find Full Text PDFNanocarriers are gaining significant importance in the modern era of drug delivery. Nanofiber technology is one of the prime paradigms in nanotechnology for various biomedical and theranostic applications. Nanofibers obtained after successful electrospinning subjected to surface functionalized for drug delivery, biomedical, tissue engineering, biosensing, cell imaging and wound dressing application.
View Article and Find Full Text PDFBladder cancer is the first cancer for which PDT was clinically approved in 1993. Unfortunately, it was unsuccessful due to side effects like bladder contraction. Here, we summarized the recent progress of PDT for bladder cancers, focusing on photosensitizers and formulations.
View Article and Find Full Text PDFQuercetin, a flavonoid, has antioxidant and anti-inflammatory properties and the potential to inhibit the proliferation of cancer, but its therapeutic efficacy is lowered due to poor solubility and bioavailability. Quercetin-loaded nanocochleates (QN) were developed using a trapping method by the addition of calcium ions into preformed negatively charged liposomes (QL) prepared by a thin-film hydration method. Liposomes were optimized by varying the concentration of Dimyristoyl phosphatidyl glycerol and quercetin by applying D-optimal factorial design using Design-Expert software.
View Article and Find Full Text PDFExpert Rev Vaccines
November 2022
Introduction: Gene-editing technology revolutionized vaccine manufacturing and offers a variety of benefits over traditional vaccinations, such as improved immune response, higher production rate, stability, precise immunogenic activity, and fewer adverse effects. The more recently discovered Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/associated protein 9 (Cas9) system has become the most widely utilized technology based on its efficiency, utility, flexibility, versatility, ease of use, and cheaper compared to other gene-editing techniques. Considering its wider scope for genomic modification, CRISPR/Cas9-based technology's potential is explored for vaccine development.
View Article and Find Full Text PDFTemperature-induced, rapid changes in the viscosity and reproducible 3-D structure formation makes thermos-sensitive hydrogels an ideal delivery system to act as a cell scaffold or a drug reservoir. Moreover, the hydrogels' minimum invasiveness, high biocompatibility, and facile elimination from the body have gathered a lot of attention from researchers. This review article attempts to present a complete picture of the exhaustive arena, including the synthesis, mechanism, and biomedical applications of thermosensitive hydrogels.
View Article and Find Full Text PDFMicroneedle (MNs) technology is a recent advancement in biomedical science across the globe. The current limitations of drug delivery, like poor absorption, low bioavailability, inadequate skin permeation, and poor biodistribution, can be overcome by MN-based drug delivery. Nanotechnology made significant changes in fabrication techniques for microneedles (MNs) and design shifted from conventional to novel, using various types of natural and synthetic materials and their combinations.
View Article and Find Full Text PDFIn recent decades there has been growing interest of material chemists in the successful development of functional materials for drug delivery, tissue engineering, imaging, diagnosis, theranostic, and other biomedical applications with advanced nanotechnology tools. The efficacy and safety of functional materials are determined by their pharmacological, toxicological, and immunogenic effects. It is essential to consider all degradation pathways of functional materials and to assess plausible intermediates and final products for quality control.
View Article and Find Full Text PDFWound management is one of the major global challenges in recent times, and woundassociated infection has a significant impact on the healthcare economy worldwide. Wounds can be acute or chronic type, also diabetic, trauma, accidental, burn wounds and minor cuts, bruises, and rashes, etc. One of the primary treatment options available in these conditions are the use of suitable dressing materials to cover the wound and accelerate the healing process.
View Article and Find Full Text PDFPoly(lactic-co-glycolic acid) (PLGA) is the most commonly described biocompatible copolymer used in biomedical applications. In this work, a green synthetic approach based on the biocompatible zinc proline complex, as an initiator for PLGA synthesis, is reported for the first time for the synthesis of methoxy-poly(ethylene glycol)-block-poly(l-lactic-co-glycolic acid) (mPEG-PLGA). mPEG-PLGA with controlled molecular weight and narrow polydispersity was synthesised.
View Article and Find Full Text PDFOne of the major challenges in effective cancer chemotherapy is the severe systemic cytotoxicities of anticancer drugs on healthy tissues. The present study reports chemically modified polymeric nanocapsules (NCs) encapsulating combination of chemotherapeutic drugs Docetaxel (DTX) and Quercetin (QU) for its active targeting to prostate cancer (PCa). The active targeting was achieved by conjugating Luteinizing-hormone-releasing hormone (LHRH) ligand to poly-lactide-co-glycolide (PLGA) using polyethylene glycol (PEG) as a spacer.
View Article and Find Full Text PDFFacilitating the process of wound healing and effective treatment of wounds remains a serious challenge in healthcare. Wound dressing materials play a major role in the protection of wounds and in accelerating the natural healing process. In the present study, novel core/shell (c/s) nanofibrous mats of poly(vinyl pyrrolidone)‑iodine (PVPI) and polycaprolactone (PCL) were fabricated using a co-axial electrospinning process followed by their surface modification with poly-l-lysine.
View Article and Find Full Text PDFFabricating a bioartificial bone graft possessing structural, mechanical and biological properties mimicking the real bone matrix is a major challenge in bone tissue engineering. Moreover, the developed materials are prone to microbial invasion leading to biomaterial centered infections which might limit their clinical translation. In the present study, biomimetic nanofibrous scaffolds of Poly ɛ-caprolactone (PCL)/nano-hydroxyapatite (nHA) were electrospun with 1wt%, 5wt%, 10wt%, 15wt% and 30wt% of zinc oxide (ZnO) nanoparticles in order to understand the optimal concentration range of (ZnO) nanoparticles balancing both biocompatibility and osteoregeneration.
View Article and Find Full Text PDFBiomaterials used as blood-contacting material must be hemocompatible and exhibit lower thrombotic potential while maintaining hemostasis and angiogenesis. With the aim of developing thromboresistant, hemocompatible nanofibrous scaffolds, polyurethane/polyethylene glycol scaffolds incorporated with 1, 5, and 10 wt% Clopidogrel were fabricated and evaluated for their physiochemical properties, biocompatibility, hemocompatibility, and antithrombotic potential. The results of physicochemical characterization revealed the fabrication of nanometer-sized scaffolds with smooth surfaces.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
November 2018
Antimicrobial electrospun nonwoven Eudragit L-100 nanofibrous mats containing Moxifloxacin hydrochloride (MOX-HCL) were fabricated for fast dissolving drug delivery systems (DDSs) associated with wound infection. The morphological characterization of nanofibers using ESEM revealed that the average diameter of non-woven nanofibrous mats ranges 200-600 nm. The nanofiber showed cylindrical shape with crack on the surface.
View Article and Find Full Text PDF