Planar laser-induced incandescence (LII) imaging is reported at repetition rates up to 100 kHz using a burst-mode laser system to enable studies of soot formation dynamics in highly turbulent flames. To quantify the accuracy and uncertainty of relative soot volume fraction measurements, the temporal evolution of the LII field in laminar and turbulent flames is examined at various laser operating conditions. Under high-speed repetitive probing, it is found that LII signals are sensitive to changes in soot physical characteristics when operating at high laser fluences within the soot vaporization regime.
View Article and Find Full Text PDFHigh-repetition-rate, burst-mode lasers can achieve higher energies per pulse compared with continuously pulsed systems, but the relatively few number of laser pulses in each burst has limited the temporal dynamic range of measurements in unsteady flames. A fivefold increase in the range of timescales that can be resolved by burst-mode laser-based imaging systems is reported in this work by extending a hybrid diode- and flashlamp-pumped Nd:YAG-based amplifier system to nearly 1000 pulses at 100 kHz during a 10 ms burst. This enables an unprecedented burst-mode temporal dynamic range to capture turbulent fluctuations from 0.
View Article and Find Full Text PDF