Engineering sesquiterpene synthases to form predefined alternative products is a major challenge due to their diversity in cyclization mechanisms and our limited understanding of how amino acid changes affect the steering of these mechanisms. Here, we use a combination of atomistic simulation and site-directed mutagenesis to engineer a selina-4(15),7(11)-diene synthase (SdS) such that its final reactive carbocation is quenched by trapped active site water, resulting in the formation of a complex hydroxylated sesquiterpene (selin-7(11)-en-4-ol). Initially, the SdS G305E variant produced 20% selin-7(11)-en-4-ol.
View Article and Find Full Text PDFThe high-fidelity sesquiterpene cyclase (-)-germacradien-4-ol synthase (GdolS) converts farnesyl diphosphate into the macrocyclic alcohol (-)-germacradien-4-ol. Site-directed mutagenesis was used to decipher the role of key residues in the water control mechanism. Replacement of Ala176, located in the G1/2 helix, with non-polar aliphatic residues of increasing size (valine, leucine, isoleucine and methionine) resulted in the accumulation of the non-hydroxylated products germacrene A and germacrene D.
View Article and Find Full Text PDFChemoenzymatic synthesis of non-natural terpenes using the promiscuous activity of terpene synthases allows for the expansion of the chemical space of terpenoids with potentially new bioactivities. In this report, we describe protocols for the preparation of a novel aphid attractant, (S)-14,15-dimethylgermacrene D, by exploiting the promiscuity of (S)-germacrene D synthase from Solidago canadensis and using an engineered biocatalytic route to convert prenols to terpenoids. The method uses a combination of five enzymes to carry out the preparation of terpenoid semiochemicals in two steps: (1) diphosphorylation of five or six carbon precursors (prenol, isoprenol and methyl-isoprenol) catalyzed by Plasmodium falciparum choline kinase and Methanocaldococcus jannaschii isopentenyl phosphate kinase to form DMADP, IDP and methyl-IDP, and (2) chain elongation and cyclization catalyzed by Geobacillus stearothermophilus (2E,6E)-farnesyl diphosphate synthase and S.
View Article and Find Full Text PDFTerpene synthases (TS) catalyze complex reactions to produce a diverse array of terpene skeletons from linear isoprenyl diphosphates. Patchoulol synthase (PTS) from converts farnesyl diphosphate into patchoulol. Using simulation-guided engineering, we obtained PTS variants that eliminate water capture.
View Article and Find Full Text PDFNatural sesquiterpene synthases have evolved to make complex terpenoids by quenching reactive carbocations either by proton transfer or by hydroxylation (water capture), depending on their active site. Germacradien-11-ol synthase (Gd11olS) from catalyzes the cyclization of farnesyl diphosphate (FDP) into the hydroxylated sesquiterpene germacradien-11-ol. Here, we combine experiment and simulation to guide the redesign of its active site pocket to avoid hydroxylation of the product.
View Article and Find Full Text PDFOsHOX24 mediates regulation of desiccation stress response via complex regulatory network as indicated by its binding to several target genes including transcription factors in rice. HD-ZIP I subfamily of homeobox transcription factors (TFs) are involved in abiotic stress responses and plant development. Previously, we demonstrated the role of OsHOX24, a member of HD-ZIP I subfamily, in abiotic stress responses.
View Article and Find Full Text PDFCyanobacteria are an immense source of innovative classes of pharmacologically active compounds exhibiting various biological activities ranging from antioxidants, antibiotics, anticancer, anti-inflammatory to anti-Alzheimer's disease. In the present study, we primarily targeted the inhibition of Beta-site amyloid precursor protein cleaving enzyme-1 (BACE1) by a naturally occurring cyanobacterial protein phycoerythrin (C-PE). BACE1 cleaves amyloid-β precursor protein (APP) and leads to accumulation of neurotoxic amyloid beta (Aβ) plaques in the brain, as an attribute of Alzheimer's disease (AD).
View Article and Find Full Text PDFAsparagus racemosus (Shatavari), belongs to the family Asparagaceae and is known as a "curer of hundred diseases" since ancient time. This plant has been exploited as a food supplement to enhance immune system and regarded as a highly valued medicinal plant in Ayurvedic medicine system for the treatment of various ailments such as gastric ulcers, dyspepsia, cardiovascular diseases, neurodegenerative diseases, cancer, as a galactogogue and against several other diseases. In depth metabolic fingerprinting of various parts of the plant led to the identification of 13 monoterpenoids exclusively present in roots.
View Article and Find Full Text PDFSaffron (Crocus sativus L.) is commonly known as world's most expensive spice with rich source of apocarotenoids and possesses magnificent medicinal properties. To understand the molecular basis of apocarotenoid biosynthesis/accumulation, we performed transcriptome sequencing from five different tissues/organs of C.
View Article and Find Full Text PDFIndian Sandalwood, Santalum album L. is highly valued for its fragrant heartwood oil and is dominated by a blend of sesquiterpenes. Sesquiterpenes are formed through cyclization of farnesyl diphosphate (FPP), catalyzed by metal dependent terpene cyclases.
View Article and Find Full Text PDFCatharanthus roseus [L.] is a major source of the monoterpene indole alkaloids (MIAs), which are of significant interest due to their therapeutic value. These molecules are formed through an intermediate, cis-trans-nepetalactol, a cyclized product of 10-oxogeranial.
View Article and Find Full Text PDFBiocatalyst mediated regio- and stereo-selective hydroxylation and epoxidation on (Z)-α-santalol were achieved for the first time, using a fungal strain Mucor piriformis. Four novel metabolites were characterized as 10,11-cis-β-epoxy-α-santalol, 5α-hydroxy-(Z)-α-santalol, 10,11-dihydroxy-α-santalol and 5α-hydroxy-10,11-cis-β-epoxy-α-santalol. Using Amano PS lipase from Burkholderia cepacia, α- and β-isomers of 10,11-cis-epoxy-α-santalol were resolved efficiently.
View Article and Find Full Text PDFNonribosomal E-vinylogous γ-amino acids are widely present in many peptide natural products and have been exploited as inhibitors for serine and cysteine proteases. Here, we are reporting the broad spectrum antimicrobial properties and self-assembled nanostructures of various hybrid lipopeptides composed of 1:1 alternating α- and E-vinylogous residues. Analysis of the results revealed that self-assembled nanostructures also play a significant role in the antimicrobial and hemolytic activities.
View Article and Find Full Text PDFThe major sesquiterpene constituents of East-Indian sandalwood oil (Z)-α- and (Z)-β-santalols have shown to be responsible for most of the biological activities and organoleptic properties of sandalwood oil. The work reported here describes the strategic use of medium pressure liquid chromatography (MPLC) for the separation of both α- and β-santalenes and (Z)-α- and (Z)-β-santalols. Silver nitrate impregnated silica gel was used as the stationary phase in MPLC for quantitative separation of α- and β-santalenes and (Z)-α- and (Z)-β-santalols with mobile phases hexane and dichloromethane, respectively.
View Article and Find Full Text PDF