NON-PHOTOTROPIC HYPOCOTYL 3 (NPH3) is a key component of the auxin-dependent plant phototropic growth response. We report that NPH3 directly binds polyacidic phospholipids, required for plasma membrane association in darkness. We further demonstrate that blue light induces an immediate phosphorylation of a C-terminal 14-3-3 binding motif in NPH3.
View Article and Find Full Text PDFNutrient acquisition is entangled with growth and stress in sessile organisms. The bHLH transcription factor FIT is a key regulator of Arabidopsis iron (Fe) acquisition and post-translationally activated upon low Fe. We identified CBL-INTERACTING PROTEIN KINASE CIPK11 as a FIT interactor.
View Article and Find Full Text PDFIn plants, potassium (K ) homeostasis is tightly regulated and established against a concentration gradient to the environment. Despite the identification of Ca -regulated kinases as modulators of K channels, the immediate signaling and adaptation mechanisms of plants to low-K conditions are only partially understood. To assess the occurrence and role of Ca signals in Arabidopsis thaliana roots, we employed ratiometric analyses of Ca dynamics in plants expressing the Ca reporter YC3.
View Article and Find Full Text PDFCold tolerance fundamentally affects world crop harvest. Ma et al. now identify a single-nucleotide polymorphism in a gene called COLD1 that confers cold tolerance in japonica rice.
View Article and Find Full Text PDFStimulus-specific accumulation of second messengers like reactive oxygen species (ROS) and Ca(2+) are central to many signaling and regulation processes in plants. However, mechanisms that govern the reciprocal interrelation of Ca(2+) and ROS signaling are only beginning to emerge. NADPH oxidases of the respiratory burst oxidase homolog (RBOH) family are critical components contributing to the generation of ROS while Calcineurin B-like (CBL) Ca(2+) sensor proteins together with their interacting kinases (CIPKs) have been shown to function in many Ca(2+)- signaling processes.
View Article and Find Full Text PDF