Visual and visual processing deficits are implicated in freezing, falling, and cognitive impairments in Parkinson's disease (PD). In particular, contrast sensitivity deficits are common and may be related to cognitive impairment in PD. While dopaminergic deficits play a role in PD-related visual dysfunction, brain cholinergic systems also modulate many aspects of visual processing.
View Article and Find Full Text PDFCortical cholinergic projections originate from subregions of the basal forebrain (BF). To examine its organization in humans, we computed multimodal gradients of BF connectivity by combining 7 T diffusion and resting state functional MRI. Moving from anteromedial to posterolateral BF, we observe reduced tethering between structural and functional connectivity gradients, with the lowest tethering in the nucleus basalis of Meynert.
View Article and Find Full Text PDFBackground: With bipolar disorder (BD) having a lifetime prevalence of 4.4% and a significant portion of patients being chronically burdened by symptoms, there has been an increased focus on uncovering new targets for intervention in BD. One area that has shown early promise is the mitochondrial hypothesis.
View Article and Find Full Text PDFBackground: Postural instability and gait disturbances (PIGD) represent a significant cause of disability in Parkinson's disease (PD). Cholinergic system dysfunction has been implicated in falls in PD. The occurrence of falls typically results in fear of falling (FoF) that in turn may lead to poorer balance self-efficacy.
View Article and Find Full Text PDFThe cholinergic system has been implicated in postural deficits, in particular falls, in Parkinson's disease (PD). Falls and freezing of gait typically occur during dynamic and challenging balance and gait conditions, such as when initiating gait, experiencing postural perturbations, or making turns. However, the precise cholinergic neural substrate underlying dynamic postural and gait changes remains poorly understood.
View Article and Find Full Text PDFObjective: Cognitive decline in Parkinson disease (PD) is a disabling and highly variable non-motor feature. While cholinergic systems degeneration is linked to cognitive impairments in PD, most prior research reported cross-sectional associations. We aimed to fill this gap by investigating whether baseline regional cerebral vesicular acetylcholine transporter ligand [ F]-fluoroethoxybenzovesamicol ([ F]-FEOBV) binding predicts longitudinal cognitive changes in mild to moderate, non-demented PD subjects.
View Article and Find Full Text PDFUnderstanding the neural underpinning of human gait and balance is one of the most pertinent challenges for 21st-century translational neuroscience due to the profound impact that falls and mobility disturbances have on our aging population. Posture and gait control does not happen automatically, as previously believed, but rather requires continuous involvement of central nervous mechanisms. To effectively exert control over the body, the brain must integrate multiple streams of sensory information, including visual, vestibular, and somatosensory signals.
View Article and Find Full Text PDFFlumazenil is an allosteric modulator of the γ-aminobutyric acid-A receptor (GABAR) benzodiazepine binding site that could normalize neuronal signaling and improve motor impairments in Parkinson's disease (PD). Little is known about how regional GABAR availability affects motor symptoms. We investigated the relationship between regional availability of GABAR benzodiazepine binding sites and motor impairments in PD.
View Article and Find Full Text PDFMost individuals with Parkinson's disease experience cognitive decline. Mounting evidence suggests this is partially caused by cholinergic denervation due to α-synuclein pathology in the cholinergic basal forebrain. Alpha-synuclein deposition causes inflammation, which can be measured with free water fraction, a diffusion MRI-derived metric of extracellular water.
View Article and Find Full Text PDFPositron Emission Tomography (PET) brain imaging is increasingly utilized in clinical and research settings due to its unique ability to study biological processes and subtle changes in living subjects. However, PET imaging is not without its limitations. Currently, bias introduced by partial volume effect (PVE) and poor signal-to-noise ratios of some radiotracers can hamper accurate quantification.
View Article and Find Full Text PDFThere are conflicting results regarding regional age-related changes in serotonin terminal density in human brain. Some imaging studies suggest age-related declines in serotoninergic terminals and perikarya. Other human imaging studies and post-mortem biochemical studies suggest stable brain regional serotoninergic terminal densities across the adult lifespan.
View Article and Find Full Text PDFCognitive decline in Parkinson's disease is related to cholinergic system degeneration, which can be assessed in vivo using structural MRI markers of basal forebrain volume and PET measures of cortical cholinergic activity. In the present study we aimed to examine the interrelation between basal forebrain degeneration and PET-measured depletion of cortical acetylcholinesterase activity as well as their relative contribution to cognitive impairment in Parkinson's disease. This cross-sectional study included 143 Parkinson's disease participants without dementia and 52 healthy control participants who underwent structural MRI, PET scanning with 11C-methyl-4-piperidinyl propionate (PMP) as a measure of cortical acetylcholinesterase activity, and a detailed cognitive assessment.
View Article and Find Full Text PDFThe cholinergic innervation of the cortex originates almost entirely from populations of neurons in the basal forebrain (BF). Structurally, the ascending BF cholinergic projections are highly branched, with individual cells targeting multiple different cortical regions. However, it is not known whether the structural organization of basal forebrain projections reflects their functional integration with the cortex.
View Article and Find Full Text PDFPostural instability and freezing of gait are the most debilitating dopamine-refractory motor impairments in advanced stages of Parkinson's disease because of increased risk of falls and poorer quality of life. Recent findings suggest an inability to efficaciously utilize vestibular information during static posturography among people with Parkinson's disease who exhibit freezing of gait, with associated changes in cholinergic system integrity as assessed by vesicular acetylcholine transporter PET. There is a lack of adequate understanding of how postural control varies as a function of available sensory information in patients with Parkinson's disease with freezing of gait.
View Article and Find Full Text PDFObjectives: Structural imaging of the cholinergic basal forebrain may provide a biomarker for cholinergic system integrity that can be used in motor and non-motor outcome studies in Parkinson's disease. However, no prior studies have validated these structural metrics with cholinergic nerve terminal in vivo imaging in Parkinson's disease. Here, we correlate cholinergic basal forebrain morphometry with the topography of vesicular acetylcholine transporter in a large Parkinson's sample.
View Article and Find Full Text PDFCortical cholinergic deficits contribute to cognitive decline and other deficits in Parkinson's disease. Cross-sectional imaging studies suggest a stereotyped pattern of posterior-to-anterior cortical cholinergic denervation accompanying disease progression in Parkinson's disease. We used serial acetylcholinesterase PET ligand imaging to characterize the trajectory of regional cholinergic synapse deficits in Parkinson's disease, testing the hypothesis of posterior-to-anterior progression of cortical cholinergic deficits.
View Article and Find Full Text PDFBackground: Postural instability and gait difficulties (PIGD) are a significant cause of disability and loss of quality of life (QoL) in Parkinson's Disease. Most research on clinical predictors of PIGD measures have focused on individual clinical often motor performance variables, However, PIGD motor features often result in fear of falling (FoF) lowering a patient's mobility self-efficacy. The purpose of this study was to assess composite measures of motor and self-efficacy determinants PIGD motor features in PD and compare these to analysis of individual clinical metrics.
View Article and Find Full Text PDFBackground: The vestibular system has been implicated in the pathophysiology of episodic motor impairments in Parkinson's disease (PD), but specific evidence remains lacking.
Objective: We investigated the relationship between the presence of freezing of gait and falls and postural failure during the performance on Romberg test condition 4 in patients with PD.
Methods: Modified Romberg sensory conflict test, fall, and freezing-of-gait assessments were performed in 92 patients with PD (70 males/22 females; mean age, 67.
Background: Degeneration of the cholinergic system plays an important role in cognitive impairment in Parkinson's disease (PD). Positron emission tomography (PET) imaging using the presynaptic vesicular acetylcholine transporter (VAChT) tracer [F]Fluoroethoxybenzovesamicol ([F]FEOBV) allows for regional assessment of cholinergic innervation. The purpose of this study was to perform a data-driven analysis to identify co-varying cholinergic regions and to evaluate the relationship of these with cognitive functioning in PD.
View Article and Find Full Text PDFPrior studies indicate more severe brainstem cholinergic deficits in Progressive Supranuclear Palsy (PSP) compared to Parkinson's disease (PD), but the extent and topography of subcortical deficits remains poorly understood. The objective of this study is to investigate differential cholinergic systems changes in progressive supranuclear palsy (PSP, n = 8) versus Parkinson's disease (PD, n = 107) and older controls (n = 19) using vesicular acetylcholine transporter [F]-fluoroethoxybenzovesamicol (FEOBV) positron emission tomography (PET). A whole-brain voxel-based PET analysis using Statistical Parametric Mapping (SPM) software (SPM12) for inter-group comparisons using parametric [F]-FEOBV DVR images.
View Article and Find Full Text PDFPurpose Of Review: Neuroimaging has been advanced in the last years and enabled clinicians to evaluate sleep disorders, especially isolated rapid eye movement sleep disorder (iRBD), which can be seen in alpha-synucleinopathies. iRBD is the best prodromal clinical marker for phenoconversion to these neurodegenerative diseases. This review aims to provide an update on advanced neuroimaging biomarkers in iRBD.
View Article and Find Full Text PDFTo examine regional cerebral vesicular acetylcholine transporter (VAChT) ligand [F]fluoroethoxybenzovesamicol ([F]-FEOBV) PET binding in Parkinson' disease (PD) patients with and without vestibular sensory conflict deficits (VSCD). To examine associations between VSCD-associated cholinergic brain deficits and postural instability and gait difficulties (PIGD). PD persons (M70/F22; mean age 67.
View Article and Find Full Text PDFAcetylcholine plays a major role in brain cognitive and motor functions with regional cholinergic terminal loss common in several neurodegenerative disorders. We describe age-related declines of regional cholinergic neuron terminal density using the positron emission tomography (PET) ligand [F](-)5-Fluoroethoxybenzovesamicol ([F] FEOBV), a vesamicol analogue selectively binding to the vesicular acetylcholine transporter (VAChT). A total of 42 subjects without clinical evidence of neurologic disease (mean 50.
View Article and Find Full Text PDFThe [F]fluoroethoxybenzovesamicol ([F]FEOBV) positron emission tomography (PET) ligand targets the vesicular acetylcholine transporter. Recent [F]FEOBV PET rodent studies suggest that regional brain [F]FEOBV binding may be modulated by dopamine D2-like receptor agents. We examined associations of regional brain [F]FEOBV PET binding in Parkinson's disease (PD) subjects without versus with dopamine D2-like receptor agonist drug treatment.
View Article and Find Full Text PDF