Publications by authors named "Prabesh Gyawali"

The layered liquid crystalline phases formed by DNA molecules, which include rigid and flexible segments ("gapped DNA"), enable the study of both end-to-end stacking and side-to-side (helix-to-helix) lateral interactions, forming a model system to study such interactions at physiologically relevant DNA and ion concentrations. The observed layer structure exhibits long-range interlayer and in-layer positional correlations. In particular, the in-layer order has implications for DNA condensation, as it reflects whether these normally repulsive interactions become attractive under certain ionic conditions.

View Article and Find Full Text PDF

Positionally ordered bilayer liquid crystalline nanostructures formed by gapped DNA (GDNA) constructs provide a practical window into DNA-DNA interactions at physiologically relevant DNA concentrations; concentrations several orders of magnitude greater than those in commonly used biophysical assays. The bilayer structure of these states of matter is stabilized by end-to-end base stacking interactions; moreover, such interactions also promote in-plane positional ordering of duplexes that are separated from each other by less than twice the duplex diameter. The end-to-end stacked as well as in-plane ordered duplexes exhibit distinct signatures when studied via small-angle X-ray scattering (SAXS).

View Article and Find Full Text PDF

Telomeres terminate with a 50-300 bases long single-stranded G-rich overhang, which can be misrecognized as a DNA damage repair site. Shelterin plays critical roles in maintaining and protecting telomere ends by regulating access of various physiological agents to telomeric DNA, but the underlying mechanism is not well understood. Here, we measure how shelterin affects the accessibility of long telomeric overhangs by monitoring transient binding events of a short complementary peptide nucleic acid (PNA) probe using FRET-PAINT in vitro.

View Article and Find Full Text PDF

We present a collection of single molecule work on the i-motif structure formed by the human telomeric sequence. Even though it was largely ignored in earlier years of its discovery due to its modest stability and requirement for low pH levels (pH < 6.5), the i-motif has been attracting more attention recently as both a physiologically relevant structure and as a potent pH sensor.

View Article and Find Full Text PDF

Although its mesomorphic properties have been studied for many years, only recently has the molecule of life begun to reveal the true range of its rich liquid crystalline behavior. End-to-end interactions between concentrated, ultrashort DNA duplexes-driving the self-assembly of aggregates that organize into liquid crystal phases-and the incorporation of flexible single-stranded "gaps" in otherwise fully paired duplexes-producing clear evidence of an elementary lamellar (smectic-A) phase in DNA solutions-are two exciting developments that have opened avenues for discovery. Here, we report on a wider investigation of the nature and temperature dependence of smectic ordering in concentrated solutions of various "gapped" DNA (GDNA) constructs.

View Article and Find Full Text PDF

Ribosomes are ribonucleoprotein particles that are essential for protein biosynthesis in all forms of life. During ribosome biogenesis, transcription, folding, modification, and processing of rRNA are coupled to the assembly of proteins. Various assembly factors are required to synchronize all different processes that occur during ribosome biogenesis.

View Article and Find Full Text PDF

G-quadruplex (GQ) stabilizing small molecule (SM) ligands have been used to stabilize human telomeric GQ (hGQ) to inhibit telomerase activity, or non-telomeric GQs to manipulate gene expression at transcription or translation level. GQs are known to inhibit DNA replication unless destabilized by helicases, such as Bloom helicase (BLM). Even though the impact of SM ligands on thermal stability of GQs is commonly used to characterize their efficacy, how these ligands influence helicase-mediated GQ unfolding is not well understood.

View Article and Find Full Text PDF

We report dynamic light scattering measurements of the orientational (Frank) elastic constants and associated viscosities among a homologous series of a liquid crystalline dimer, trimer, and tetramer exhibiting a uniaxial nematic (N) to twist-bend nematic (N) phase transition. The elastic constants for director splay (K), twist (K) and bend (K) exhibit the relations K > K > K and K/K > 2 over the bulk of the N phase. Their behavior near the N-N transition shows dependency on the parity of the number (n) of the rigid mesomorphic units in the flexible n-mers.

View Article and Find Full Text PDF

We performed single molecule studies to investigate the impact of several prominent small molecules (the oxazole telomestatin derivative L2H2-6OTD, pyridostatin, and Phen-DC) on intermolecular G-quadruplex (i-GQ) formation between two guanine-rich DNA strands that had 3-GGG repeats in one strand and 1-GGG repeat in the other (3+1 GGG), or 2-GGG repeats in each strand (2+2 GGG). Such structures are not only physiologically significant but have recently found use in various biotechnology applications, ranging from DNA-based wires to chemical sensors. Understanding the extent of stability imparted by small molecules on i-GQ structures, has implications for these applications.

View Article and Find Full Text PDF

We report a case of a 42-year-old man with a submitral aneurysm who presented to the emergency room in circulatory collapse, with left ventricular obstruction and severe mitral valve stenosis and regurgitation secondary to the aneurysm. Resection of the aneurysm and mitral valve replacement were performed through a median sternotomy without any complication and with good results.

View Article and Find Full Text PDF