In vascular surgery, most synthetic vascular grafts currently used for large vessels replacements are made of Dacron (polyethylene terephthalate; PET). In this study, the dynamic response of these synthetic arterial substitutes to physiological pulsatile conditions is investigated in depth. Experiments were performed on a mock circulatory loop developed to replicate physiological pulsatile pressure and flow.
View Article and Find Full Text PDFAortic dissection is one of the most lethal cardiovascular diseases. A chronic Type A (Stanford) dissected aorta was retrieved for research from a 73-year-old male donor without diagnosed genetic disease. The aorta presented a dissection over the full length, and it reached a diameter of 7.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
November 2019
The generalized fractional Maxwell model, formulated for hyperelastic material within the framework of the nonlinear viscoelasticity with internal variables, is applied to identify viscoelastic constitutive equations from layer-specific experimental data obtained by uniaxial harmonic loading of ex-vivo human descending thoracic aortas. The constitutive parameters are identified by using a genetic algorithm for the optimal fitting of the experimental data. The accuracy of the fitted fractional model is compared to the fitted integer order model with the same number of Maxwell elements.
View Article and Find Full Text PDFA layer-specific hyperelastic and viscoelastic characterization of human descending thoracic aortas was experimentally performed. Healthy aortas from twelve beating heart donors with an average age of 49.4 years, were received from Transplant Québec.
View Article and Find Full Text PDFWoven Dacron grafts are currently used for the surgical treatment of aortic aneurysm and acute dissection, two otherwise fatal pathologies when aortic wall rupture occurs. While Dacron is chosen for aortic grafts because of characteristics such as biocompatibility and durability, few data are available about the dynamic response of Dacron prosthetic devices and about their side effects on the cardiovascular system. In this study, a Dacron graft was subjected to physiological flow conditions in a specifically-developed mock circulatory loop.
View Article and Find Full Text PDFThis paper presents the design and testing of a one-axis piezoelectric accelerometer made from cellulose paper and piezoelectric zinc oxide nanowires (ZnO NWs) hydrothermally grown on paper. The accelerometer adopts a cantilever-based configuration with two parallel cantilever beams attached with a paper proof mass. A piece of U-shaped, ZnO-NW-coated paper is attached on top of the parallel beams, serving as the strain sensing element for acceleration measurement.
View Article and Find Full Text PDFIn case of direction-dependent viscoelasticity, a simplified formulation of the three-dimensional quasi-linear viscoelasticity has been obtained manipulating the original Fung equation. The experimental characterization of the static hyperelastic behaviour, the relaxation, the dynamic modulus and the loss factor of woven Dacron from a commercial aortic prosthesis has been performed. An 11% difference of the reduced relaxation (after infinite time) between axial and circumferential directions has been observed for the woven Dacron.
View Article and Find Full Text PDF