Publications by authors named "Pr Selvakannan"

This present work demonstrated the functional transformation of 3D printed metal substrates into a new family of Surface-enhanced Raman Scattering substrates, a promising approach in developing SERS-based Point-of-care (PoC) analytical platforms. l-Powder Bed Fusion (l-PBF, Additive manufacturing or 3D printing technique) printed metal substrates have rough surfaces, and exhibit high thermal stability and intrinsic chemical inertness, necessitating a suitable surface functionalization approach. This present work demonstrated a unique multi-stage approach to transform l-PBF printed metal structures as recyclable SERS substrates by colloidal carbon templating, chemical vapor deposition, and electroless plating methods sequentially.

View Article and Find Full Text PDF

Combining the design flexibility and rapid prototyping capabilities of additive manufacturing with photocatalytic and plasmonic functionalities is promising for the development of next-generation SERS applications such as point of care diagnostics and monitoring of chemical reactions in fuels and chemical processing. Laser powder bed fusion (LPBF) is a well-matured additive manufacturing technique which generates metallic structures through localised melting and joining of metal powders using a laser. LPBF reduces material wastage during manufacturing, is applicable to a wide range of metals and alloys, and allows printing of complex internal structures.

View Article and Find Full Text PDF

Generation and fine-tuning of surface plasmon resonances is a prerequstite for several established and emerging applications such as photovoltaics, photocatalysis, photothermal therapy, surface-enhanced spectroscopy, sensing, superlensing and lasing. We present a low-cost and scalable lateral electrodeposition method for fabrication of high aspect ratio gold nanoring arrays that exhibit multiple surface plasmon resonances in the visible to near-infrared region. Nickel disc arrays of 2 µm size were initially fabricated using maskless lithography and e-beam evaporation.

View Article and Find Full Text PDF

Selective laser melting printed metal lattice structures functionalised using zeolites have been shown as a promising new generation of catalysts. The unprecedented catalytic activity can be explained by metal migration (most likely chromium) from the support into the zeolite phase making it a promising candidate for endothermic fuels for high-speed flight vehicles.

View Article and Find Full Text PDF

The ability of the multidentate nucleobases, adenine and thymine, to coordinate polyoxometalate and metal ions leading to the formation of self-assembled nanostructures and their strong cytotoxicity toward cancer cell lines have been demonstrated. A unique synthetic approach is developed to make a series of functional nanoscale hybrid materials consisting of nucleobases (adenine and thymine) and phosphomolybdic acid (PMA) through solid state chemical reaction and self-assembly process. Adenine was protonated through its ring nitrogen, while the ketone group in thymine was protonated during the addition of PMA to these nucleobases.

View Article and Find Full Text PDF

Drying of a pharmaceutical composition is an important step during its processing, which can affect its quality attributes including its texture, dispersion of the drug within the formulation, drug dissolution kinetics and eventually the drug's efficacy. This study presents the influence of varying drying techniques on the textural properties of the wet granulated formulation consisting of the drug naproxen sodium (NapSod) during the drying process. A new pharmaceutical formulation consisting of the NapSod drug was prepared by wet granulation and dried by novel microwave drying (MW), freeze drying (FD), vacuum drying (VD), and convective drying (CD) techniques before being processed in the form of tablets.

View Article and Find Full Text PDF

The construction of highly efficient inorganic mimetic enzymes (nanozymes) is much needed to replace natural enzymes due to their instability and high cost. Recently, nanoscale CeO has been attracting significant interest due to its unique properties such as facile redox behaviour (Ce↔ Ce) and surface defects. In the present work, various amounts of Fe-doped CeO nanorods (NRs) (with 3, 6, 9, and 12% Fe doping) were synthesized using a facile hydrothermal method and investigated for peroxidase-like activity and glucose detection.

View Article and Find Full Text PDF

This study illustrates a facile strategy for efficient immobilization of enzymes on a metal nanoparticle surface. The strategy proposed here enables the enzymatic activity to be retained while increasing the enzyme thermostability. It is demonstrated that the use of a zwitterionic amino acid tyrosine as a reducing and capping agent to synthesise gold nanoparticles allows efficient immobilization of phytase enzyme through charge-switchable electrostatic interactions.

View Article and Find Full Text PDF

The electrostatic interaction between the negatively charged phosphate groups of plasmid DNA and the cationic part of hydrophobic ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([Bmim][PF6]), initiates spontaneous self-assembly to form the functional nanostructures made up of DNA and ionic liquid (IL). These functional nanostructures were demonstrated as promising synthetic nonviral vectors for the efficient bacterial pGFP gene transformation in cells. In particular, the functional nanostructures that were made up of 1 μL of IL ([Bmim][PF6]) and 1 μg of plasmid DNA can increase the transformation efficiency by 300-400% in microbial systems, without showing any toxicity for E.

View Article and Find Full Text PDF

Thermal decomposition of co-precipitated Ni-Fe-HT materials led to the formation a mesoporous Ni-Fe-HT catalyst and we have demonstrated here its active role as solid and active catalyst for the Knoevenagel condensation reaction of various aldehydes with active methylene compounds (R-CH2-CN, where R=CN or CO2Et). High product yields are obtained at moderate temperature under solvent-free conditions and the catalyst can be easily separated from the reaction mixture, simply by filtration and reused several times without a significant loss of its activity. Since these mesoporous metal oxides derived from the NiFe hydrotalcites, their basicity mediated abstraction of the acidic protons from the active methylene compounds was responsible for their catalytic activity under solvent-free conditions.

View Article and Find Full Text PDF

We illustrate a new strategy to improve the antibacterial potential of silver nanoparticles (AgNPs) by their surface modification with the surface corona of biologically active polyoxometalates (POMs). The stable POM surface corona was achieved by utilising zwitterionic tyrosine amino acid as a pH-switchable reducing and capping agent of AgNPs. The general applicability of this approach was demonstrated by developing surface coronas of phosphotungstic acid (PTA) and phosphomolybdic acid (PMA) around AgNPs.

View Article and Find Full Text PDF

Antimicrobial action of nanomaterials is typically assigned to the nanomaterial composition, size and/or shape, whereas influence of complex corona stabilizing the nanoparticle surface is often neglected. We demonstrate sequential surface functionalization of tyrosine-reduced gold nanoparticles (AuNPs(Tyr)) with polyoxometalates (POMs) and lysine to explore controlled chemical functionality-driven antimicrobial activity. Our investigations reveal that highly biocompatible gold nanoparticles can be tuned to be a strong antibacterial agent by fine-tuning their surface properties in a controllable manner.

View Article and Find Full Text PDF

The charge transfer-mediated surface enhanced Raman scattering (SERS) of crystal violet (CV) molecules that were chemically conjugated between partially polarized silver nanoparticles and optically smooth gold and silver substrates has been studied under off-resonant conditions. Tyrosine molecules were used as a reducing agent to convert silver ions into silver nanoparticles where oxidised tyrosine caps the silver nanoparticle surface with its semiquinone group. This binding through the quinone group facilitates charge transfer and results in partially oxidised silver.

View Article and Find Full Text PDF

Advantages of confining the gold nanostructures formation within the mesoporous silica pore walls during its silica condensation and consequent improvement in the textural properties such as specific surface area, pore volume, pore diameter have been demonstrated, while retaining gold nanostructures within the silica walls. This has been achieved by tryptophan mediated confinement of gold nanoparticles formation within the condensing silica framework, to obtain Au-SBA-15 (SSA 1247 m(2)/g, V(t)~1.37 cm(3)/g) and Au-MCM-41 (SSA 1287 m(2)/g, V(t)~1.

View Article and Find Full Text PDF

The fabrication of nanostructured bimetallic materials through electrochemical routes offers the ability to control the composition and shape of the final material that can then be effectively applied as (electro)-catalysts. In this work a clean and transitory hydrogen bubble templating method is employed to generate porous Cu-Au materials with a highly anisotropic nanostructured interior. Significantly, the co-electrodeposition of copper and gold promotes the formation of a mixed bimetallic oxide surface which does not occur at the individually electrodeposited materials.

View Article and Find Full Text PDF

We report the biomacromolecular self-assembly of histidine acid phosphatase (HAP), an enzyme of significant biomedical and industrial importance, in the ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF(4)]). The spontaneous self-assembly of HAP enzyme in [BMIM][BF(4)] results in the formation of HAP nanocapsules. The HAP enzyme molecules were found to retain their enzymatic activity after the self-assembly process, which enabled us to utilize self-assembled HAP capsules as self-catalyzing templates for the synthesis of a range of hollow metal nanoparticles (Au, Ag, Pd, and Ni) without employing any additional reducing agent.

View Article and Find Full Text PDF

A rapid electrochemical method based on using a clean hydrogen-bubble template to form a bimetallic porous honeycomb Cu/Pd structure has been investigated. The addition of palladium salt to a copper-plating bath under conditions of vigorous hydrogen evolution was found to influence the pore size and bulk concentration of copper and palladium in the honeycomb bimetallic structure. The surface was characterised by X-ray photoelectron spectroscopy, which revealed that the surface of honeycomb Cu/Pd was found to be rich with a Cu/Pd alloy.

View Article and Find Full Text PDF

The formation of macroporous honeycomb gold using an electrochemically generated hydrogen bubble template is described. The synthesis procedure induces the formation of highly active surfaces with enhanced electrocatalytic and surface enhanced Raman scattering properties.

View Article and Find Full Text PDF

Gold nanorods synthesized by radiolysis were selectively end-functionalized by a fully conjugated thiol bearing a pendant terpyridine group; addition of ferrous ions led to the end-to-end 1D self-assembly of the nanorods. Similar results have been obtained when the preformed [(HStpy)Fe(tpySH)](2+) dithiol complex was directly added to the gold nanorods.

View Article and Find Full Text PDF

Transmetallation reaction between hydrophobized silver nanoparticles with hydrophobized chloroaurate and chloroplatinate ions in chloroform results in the formation of hollow gold and platinum shell nanoparticles respectively.

View Article and Find Full Text PDF

In addition to control over the size and monodispersity of nanoparticle, nanomaterial synthesis procedures are increasingly required to control their shape and assembly as well. We demonstrate in this paper synthesis of organically dispersible, hydrophobic gold nanoparticles of spherical shape and encased in triangular thin polyaniline shells by doing reaction under static conditions and assembly of these particles onto polymer nanorod/nanowire-like templates by varying the molar ratio of chloroaurate ions to hexadecylaniline and varying the solvent by the spontaneous reduction of aqueous chloroaurate ions by hexadecylaniline molecules in a biphasic reaction setup. Under stationary conditions (no stirring), a biphasic mixture of hexadecylaniline in toluene and chloroaurate ions in water leads to the electrostatic complexation of chloroaurate ions with hexadecylaniline at the liquid-liquid interface and their phase transfer into the organic phase, followed by their reduction by the hexadecylaniline molecules.

View Article and Find Full Text PDF

We demonstrate that the amino acid tyrosine is an excellent reducing agent under alkaline conditions and may be used to reduce Ag+ ions to synthesize stable silver nanoparticles in water. The tyrosine-reduced silver nanoparticles may be separated out as a powder that is readily redispersible in water. The silver ion reduction at high pH occurs due to ionization of the phenolic group in tyrosine that is then capable of reducing Ag+ ions and is in turn converted to a semi-quinone structure.

View Article and Find Full Text PDF

Protocols for the synthesis of gold nanoparticles are increasingly focusing on controlling the morphology of the nanocrystals. We demonstrate in this article the facile, one-step synthesis of gold nanotapes that are readily dispersible in organic media. This is accomplished by the spontaneous reduction of aqueous chloroaurate ions by hexadecylaniline molecules present in chloroform at the static interface between water and chloroform.

View Article and Find Full Text PDF

The synthesis of water-dispersible amino-acid-protected gold nanoparticles by the spontaneous reduction of aqueous chloroaurate ions by tryptophan is described. Water-dispersible gold nanoparticles may also be obtained by the sequential synthesis of the gold nanoparticles by borohydride reduction of chloroauric acid followed by capping with tryptophan. Comparison of the proton NMR spectroscopic signatures from the tryptophan-protected gold nanoparticles obtained by the two processes indicated that the indole group in tryptophan is responsible for reduction of the aqueous chloroaurate ions.

View Article and Find Full Text PDF