Publications by authors named "Pozar T"

The interaction of localized light with matter generates optical electrostriction within dielectric fluids, leading to a discernible change in the refractive index of the medium according to the excitation's light profile. This optical force holds critical significance in optical manipulation and plays a fundamental role in numerous photonic applications. In this study, we demonstrate the applicability of the pump-probe, photo-induced lensing (PIL) method to investigate optical electrostriction in various dielectric liquids.

View Article and Find Full Text PDF

We present semi-analytical solutions describing the spatiotemporal distributions of temperature and pressure inside low-absorbing dielectrics excited by tightly focused laser beams. These solutions are compared to measurements in water associated with variations of the local refractive index due to acoustic waves generated by electrostriction, heat deposition, and the Kerr effect at different temperatures. The experimental results exhibited an excellent agreement with the modeling predictions, with electrostriction being the dominant transient effect in the acoustic wave generation.

View Article and Find Full Text PDF

The secondary cavitation generation following laser-induced breakdown in aqueous media in spherical geometry, mimicking the geometry of the frontal part of the human eye, was studied. A numerical simulation of the shock wave propagation was performed, yielding peak-pressure maps, correctly predicting the location of the secondary cavitation onset for different shock wave source positions. The comparison between the simulation results and the experiments, performed with a high-precision, multiple-illumination technique, supports the suggested description of the nature of the secondary cavitation onset.

View Article and Find Full Text PDF

Precise control over light-matter interactions is critical for many optical manipulation and material characterization methodologies, further playing a paramount role in a host of nanotechnology applications. Nonetheless, the fundamental aspects of interactions between electromagnetic fields and matter have yet to be established unequivocally in terms of an electromagnetic momentum density. Here, we use tightly focused pulsed laser beams to detect bulk and boundary optical forces in a dielectric fluid.

View Article and Find Full Text PDF

The interplay among the cavitation structures and the shock waves following a nanosecond laser breakdown in water in the vicinity of a concave surface was visualized with high-speed shadowgraphy and schlieren cinematography. Unlike the generation of the main cavitation bubble near a flat or a convex surface, the concave surface refocuses the emitted shock waves and causes secondary cavitation near the acoustic focus which is most pronounced when triggered by the shock wave released during the first main bubble collapse. The shock wave propagation, reflection from the concave surface and its scattering on the dominant cavity is clearly resolvable on the shadowgraphs.

View Article and Find Full Text PDF

We propose a combined pump-probe optical method to investigate heat diffusion properties of solids. We demonstrate single-shot simultaneous laser-induced thermoelastic surface displacement of metals detected by concurrent measurements using photothermal mirror and interferometry. Both methods probe the surface displacement by analyzing the wavefront distortions of the probe beams reflected from the surface of the sample.

View Article and Find Full Text PDF

An adaptable, laser-diode-based illumination system was developed to simultaneously visualize the dynamics of slow and fast phenomena in optically transparent media. The system can be coupled with still or high-speed cameras and makes it possible to generate an arbitrary train of illumination pulses with a variable pulse duration, pulse energy, and an intrapulse delay with a temporal resolution of 12.5 ns.

View Article and Find Full Text PDF

During laser-induced, breakdown-based medical procedures in human eyes such as posterior capsulotomy and vitreolysis, shock waves are emitted from the location of the plasma. A part of these spherically expanding transients is reflected from the concave surface of the corneal epithelium and refocused within the eye. Using a simplified experimental model of the eye, the dominant secondary cavitation clusters were detected by high-speed camera shadowgraphy in the refocusing volume, dislocated from the breakdown position and described by an abridged ray theory.

View Article and Find Full Text PDF

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

View Article and Find Full Text PDF

Electromagnetic momentum carried by light is observable through the mechanical effects radiation pressure exerts on illuminated objects. Momentum conversion from electromagnetic fields to elastic waves within a solid object proceeds through a string of electrodynamic and elastodynamic phenomena, collectively bound by momentum and energy continuity. The details of this conversion predicted by theory have yet to be validated by experiments, as it is difficult to distinguish displacements driven by momentum from those driven by heating due to light absorption.

View Article and Find Full Text PDF

Ultrasound modeling, being an established practice, is used to study the fundamentals of light-matter interactions. Although much has been published on the matter, pressure and thermal expansion induction mechanisms in laser ultrasonics have rarely been combined, as they should, in a single ultrasonic source while the effects of its size variation have only been shown to a limited extent. In the paper, we unite these light-matter interaction mechanisms, with inclusion of lateral optical forces, into a single laser-stimulated source as it is observed in nature.

View Article and Find Full Text PDF

The near-field, surface-displacement waveforms in plates are modeled using interwoven concepts of Green's function formalism and streamlined Huygens' principle. Green's functions resemble the building blocks of the sought displacement waveform, superimposed and weighted according to the simplified distribution. The approach incorporates an arbitrary circular spatial source distribution and an arbitrary circular spatial sensitivity in the area probed by the sensor.

View Article and Find Full Text PDF

During the interaction of a laser pulse with the surface of a solid object, the object always gains momentum. The delivered force impulse is manifested as propulsion. Initially, the motion of the object is composed of elastic waves that carry and redistribute the acquired momentum as they propagate and reflect within the solid.

View Article and Find Full Text PDF

An oblique reflection of a laser pulse from a fully reflective mirror is treated using the fundamental nonrelativistic conservation principles of energy and momentum. Since the mirror is considered as an elastic object, the reflection of light gives rise to an elastic wave with measurable amplitude that propagates within the mirror. Our results predict a larger Doppler shift in the reflected pulse for the most common setting, when the mirror is initially at rest, compared to the results obtained when the mirror is treated as rigid.

View Article and Find Full Text PDF

The reflection of light from the surface of an elastic solid gives rise to various types of elastic waves that propagate inside the solid. The weakest waves are generally those that are generated by the radiation pressure acting during the reflection of the light. Here, we present the first quantitative measurement of such light-pressure-induced elastic waves inside an ultrahigh-reflectivity mirror.

View Article and Find Full Text PDF

The interaction of a light pulse with reflective and either a passive, lossy medium or an active medium with population inversion gives rise to elastic waves, already as a result of the change in the momentum carried by the incident light. We derived a 1D analytic displacement field that quantitatively predicts the shape and amplitude of such waves in semi-infinite and finite elastic rods in a half-space and infinite layer. The results are compatible with the conservation of momentum and energy of the light-matter system.

View Article and Find Full Text PDF

We report on the successful realization of a contactless, non-perturbing, displacement-measuring system for characterizing the surface roughness of polymer materials used in tribological applications. A single, time-dependent, scalar value, dubbed the collective micro-asperity deformation, is extracted from the normal-displacement measurements of normally loaded polymer samples. The displacement measurements with a sub-nanometer resolution are obtained with a homodyne quadrature laser interferometer.

View Article and Find Full Text PDF

We present a dual-probe homodyne quadrature laser interferometer for the measurements of displacement at two separate spatial locations. This is a coupled homodyne interferometer with inverted polarity of probe signals featuring a wide dynamic range and constant sensitivity. As an application of this dual-probe interferometer, we demonstrate how to locate the pulsed-laser interaction site on a plate without knowing the propagation velocities of the laser-induced mechanical waves.

View Article and Find Full Text PDF

We show that fiber-delivered, pulsed laser propulsion of glass microspheres, as observed in a recent Letter [Opt. Lett. 36, 1996 (2011).

View Article and Find Full Text PDF

We present the influence of alignment and the real properties of optical components on the performance of a two-detector homodyne displacement-measuring quadrature laser interferometer. An experimental method, based on the optimization of visibility and sensitivity, was established and theoretically described to assess the performance and stability of the interferometer. We show that the optimal performance of such interferometers is achieved with the iterative alignment procedure described.

View Article and Find Full Text PDF

We performed a single-shot, contactless measurement of ultrasonic waves on a laser-propelled rod with a homodyne quadrature laser interferometer (HQLI) during the entire duration of its motion. This is the first such experimental demonstration of the laser-induced motion of an elastic body where the most important mechanisms that reveal the nature of its motion are presented and explained. Furthermore, these measurements quantitatively demonstrate that the HQLI is an appropriate tool for monitoring high-amplitude (1.

View Article and Find Full Text PDF

The influence of quadrature phase shift on the measured displacement error was experimentally investigated using a two-detector polarizing homodyne laser interferometer with a quadrature detection system. Common nonlinearities, including the phase-shift error, were determined and effectively corrected by a robust data-processing algorithm. The measured phase-shift error perfectly agrees with the theoretically determined phase-shift error region.

View Article and Find Full Text PDF