Despite their astonishing biological diversity, surprisingly few shared traits connect all or nearly all living organisms. Aging, i.e.
View Article and Find Full Text PDFThe elegance of pre-mRNA splicing mechanisms continues to interest scientists even after over a half century, since the discovery of the fact that coding regions in genes are interrupted by non-coding sequences. The vast majority of human genes have several mRNA variants, coding structurally and functionally different protein isoforms in a tissue-specific manner and with a linkage to specific developmental stages of the organism. Alteration of splicing patterns shifts the balance of functionally distinct proteins in living systems, distorts normal molecular pathways, and may trigger the onset and progression of various pathologies.
View Article and Find Full Text PDFPremalignant lesions within the bronchial epithelium signify the initial phases of squamous cell lung carcinoma, posing challenges for detection via conventional methods. Instead of focusing solely on gene expression, in this study, we explore transcriptomic alterations linked to lesion progression, with an emphasis on protein-coding transcripts. We reanalyzed a publicly available RNA-Seq dataset on airway epithelial cells from 82 smokers with and without premalignant lesions.
View Article and Find Full Text PDFObesity is a socially significant disease that is characterized by a disproportionate accumulation of fat. It is also associated with chronic inflammation, cancer, diabetes, and other comorbidities. Investigating biomarkers and pathological processes linked to obesity is especially vital for young individuals, given their increased potential for lifestyle modifications.
View Article and Find Full Text PDFApproximately 50% of tumors carry mutations in ; thus, evaluation of the features of mutant p53 is crucial to understanding the mechanisms underlying cell transformation and tumor progression. HaCaT keratinocytes represent a valuable model for research in this area since they are considered normal, although they bear two gain-of-function mutations in . In the present study, transcriptomic and proteomic profiling were employed to examine the functions of mutant p53 and to investigate the impact of its complete abolishment.
View Article and Find Full Text PDFAn increasing number of studies have investigated the effects of Cd on human health. Cd-induced dermatotoxicity is an important field of research, but numerous studies have focused on the effects of Cd on the human skin. Moreover, most studies have been performed using HaCaT cells but not primary keratinocytes.
View Article and Find Full Text PDFTranscriptomics methods (RNA-Seq, PCR) today are more routine and reproducible than proteomics methods, i.e., both mass spectrometry and immunochemical analysis.
View Article and Find Full Text PDFRhizochalinin (Rhiz) is a recently discovered cytotoxic sphingolipid synthesized from the marine natural compound rhizochalin. Previously, Rhiz demonstrated high in vitro and in vivo efficacy in various cancer models. Here, we report Rhiz to be highly active in human glioblastoma cell lines as well as in patient-derived glioma-stem like neurosphere models.
View Article and Find Full Text PDFTo represent the composition of small molecules circulating in HepG2 cells and the formation of the "core" of characteristic metabolites that often attract researchers' attention, we conducted a meta-analysis of 56 datasets obtained through metabolomic profiling via mass spectrometry and NMR. We highlighted the 288 most commonly studied compounds of diverse chemical nature and analyzed metabolic processes involving these small molecules. Building a complete map of the metabolome of a cell, which encompasses the diversity of possible impacts on it, is a severe challenge for the scientific community, which is faced not only with natural limitations of experimental technologies, but also with the absence of transparent and widely accepted standards for processing and presenting the obtained metabolomic data.
View Article and Find Full Text PDFOver the past 8 years, multiple studies examined the phenomenon of isoform switching in human cancers and discovered that isoform switching is widespread, with hundreds to thousands of such events per cancer type. Although all of these studies used slightly different definitions of isoform switching, which in part led to a rather poor overlap of their results, they all leveraged transcript usage, a proportion of the transcript's expression in the total expression level of the parent gene, to detect isoform switching. However, how changes in transcript usage correlate with changes in transcript expression is not sufficiently explored.
View Article and Find Full Text PDFBackground: Comparative transcriptomic analysis is a powerful approach for investigating the molecular mechanisms underlying various physiological and pathological processes, including liver disease. The liver is a vital organ with diverse functions, including metabolism and detoxification. In vitro models of liver cells, such as HepG2, Huh7, and Hep3B, have been widely used to study liver biology and pathology.
View Article and Find Full Text PDFIncreasing attention has been focused on the study of protein-metabolite interactions (PMI), which play a key role in regulating protein functions and directing an orchestra of cellular processes. The investigation of PMIs is complicated by the fact that many such interactions are extremely short-lived, which requires very high resolution in order to detect them. As in the case of protein-protein interactions, protein-metabolite interactions are still not clearly defined.
View Article and Find Full Text PDFAlthough modern biology is now in the post-genomic era with vastly increased access to high-quality data, the set of human genes with a known function remains far from complete. This is especially true for hundreds of mitochondria-associated genes, which are under-characterized and lack clear functional annotation. However, with the advent of multi-omics profiling methods coupled with systems biology algorithms, the cellular role of many such genes can be elucidated.
View Article and Find Full Text PDFThe continuous improvement of proteomic techniques, most notably mass spectrometry, has generated quantified proteomes of many organisms with unprecedented depth and accuracy. However, there is still a significant discrepancy in the reported numbers of total protein molecules per specific cell type. In this article, we explore the results of proteomic studies of , , and HeLa cells in terms of total protein copy numbers per cell.
View Article and Find Full Text PDFMetabolomics based on two-dimensional gas chromatography coupled with mass spectrometry is making high demands on accuracy at all stages of sample preparation, up to the storage and injection into the analytical system. In high sample flow conditions, good repeatability in peak areas and a list of detectable metabolites is sometimes challenging to obtain. In this research, we successfully obtained good repeatability for the peak areas of MSFTA-derivatives of 29 core blood plasma metabolites.
View Article and Find Full Text PDFA meta-analysis of the results of targeted quantitative screening of human blood plasma was performed to generate a reference standard kit that can be used for health analytics. The panel included 53 of the 296 proteins that form a “stable” part of the proteome of a healthy individual; these proteins were found in at least 70% of samples and were characterized by an interindividual coefficient of variation <40%. The concentration range of the selected proteins was 10−10−10−3 M and enrichment analysis revealed their association with rare familial diseases.
View Article and Find Full Text PDFThe alphabet of building blocks for RNA molecules is much larger than the standard four nucleotides. The diversity is achieved by the post-transcriptional biochemical modification of these nucleotides into distinct chemical entities that are structurally and functionally different from their unmodified counterparts. Some of these modifications are constituent and critical for RNA functions, while others serve as dynamic markings to regulate the fate of specific RNA molecules.
View Article and Find Full Text PDFBoth biological and technical variations can discredit the reliability of obtained data in omics studies. In this technical note, we investigated the effect of prolonged cultivation of the HepG2 hepatoma cell line on its metabolomic profile. Using the GC × GC-MS approach, we determined the degree of metabolic variability across HepG2 cells cultured in uniform conditions for 0, 5, 10, 15, and 20 days.
View Article and Find Full Text PDFMetabolomics uses advanced analytical chemistry methods to analyze metabolites in biological samples. The most intensively studied samples are blood and its liquid components: plasma and serum. Armed with advanced equipment and progressive software solutions, the scientific community has shown that small molecules' roles in living systems are not limited to traditional "building blocks" or "just fuel" for cellular energy.
View Article and Find Full Text PDFLiver cancer is the third leading cause of cancer death worldwide. Representing such a dramatic impact on our lives, liver cancer is a significant public health concern. Sustainable and reliable methods for preventing and treating liver cancer require fundamental research on its molecular mechanisms.
View Article and Find Full Text PDFCRISPR-Cas-based genome editing is a revolutionary approach that has provided an unprecedented investigational power for the life sciences. Rapid and efficient, CRISPR-Cas technologies facilitate the generation of complex biological models and at the same time provide the necessary methods required to study these models in depth. The field of proteomics has already significantly benefited from leveraging the power of CRISPR-Cas technologies, however, many potential applications of these technologies in the context of proteomics remain unexplored.
View Article and Find Full Text PDFLong-read direct RNA sequencing developed by Oxford Nanopore Technologies (ONT) is quickly gaining popularity for transcriptome studies, while fast turnaround time and low cost make it an attractive instrument for clinical applications. There is a growing interest to utilize transcriptome data to unravel activated biological processes responsible for disease progression and response to therapies. This trend is of particular interest for precision medicine which aims at single-patient analysis.
View Article and Find Full Text PDFUsing human chromosome 18 (Ch18) genes as an example, a PCR analysis of the interindividual variability of gene expression in liver tissue was performed. Although the quantitative profiles of the Ch18 transcriptome, expressed in the number of cDNA copies per single cell, showed a high degree of correlation between donors (Pearson correlation coefficients ranged from 0.963 to 0.
View Article and Find Full Text PDFThe cutoff level applied in sequencing analysis varies according to the sequencing technology, sample type, and study purpose, which can largely affect the coverage and reliability of the data obtained. In this study, we aimed to determine the optimal combination of parameters for reliable RNA transcriptome data analysis. Toward this end, we compared the results obtained from different transcriptome analysis platforms (quantitative polymerase chain reaction, Illumina RNASeq, and Oxford Nanopore Technologies MinION) for the transcriptome encoded by human chromosome 18 (Chr 18) using the same sample types (HepG2 cells and liver tissue).
View Article and Find Full Text PDF