Publications by authors named "Pouyatos B"

Objective: Hearing disorders are common among music professionals, as they are frequently exposed to sound levels exceeding 100 dB(A). By assessing auditory fatigue, situations that are deleterious for hearing could be identified, allowing the deployment of preventive measures before permanent impairment occurs. However, little is known about the factors contributing to auditory fatigue.

View Article and Find Full Text PDF

Numerous ototoxic drugs, such as some antibiotics and chemotherapeutics, are both cochleotoxic and vestibulotoxic (causing hearing loss and vestibular disorders). However, the impact of some industrial cochleotoxic compounds on the vestibular receptor, if any, remains unknown. As in vivo studies are long and expensive, there is considerable need for predictive and cost-effective in vitro models to test ototoxicity.

View Article and Find Full Text PDF

This study aimed to assess temporary and permanent auditory effects associated with occupational coexposure to low levels of noise and solvents. Cross-sectional study with 25 printing industry workers simultaneously exposed to low noise (<80 dBA TWA) and low levels of solvents. The control group consisted of 29 industry workers without the selected exposures.

View Article and Find Full Text PDF
Article Synopsis
  • Evaluating risks from multiple job-related exposures, especially when combining chemicals and physical factors, is complex and current databases often lack integrated health and exposure data.
  • A case study of three French databases focused on noise and ototoxic chemicals aimed to identify the most exposed occupational sectors and evaluate if combined exposures heighten the risk of hearing loss.
  • Results indicate a high rate of hearing loss in various sectors but did not demonstrate a significant increase in hearing loss rates in sectors with combined exposures.
View Article and Find Full Text PDF

Absence epilepsy belongs to genetic epilepsies and is characterized by recurrent generalized seizures that are concomitant with alterations of consciousness and associated with cognitive comorbidities. Little is known about the mechanisms leading to occurrence of epileptic seizures (i.e.

View Article and Find Full Text PDF

Epidemiological and experimental studies indicate that a number of aromatic solvents widely used in the industry can affect hearing and balance following chronic exposure. Animal studies demonstrated that long-term exposure to aromatic solvents directly damages the auditory receptor within the inner ear: the cochlea. However, no information is available on their effect on the vestibular receptor, which shares many structural features with the cochlea and is also localized in inner ear.

View Article and Find Full Text PDF

Despite well-documented neurotoxic and ototoxic properties, styrene remains commonly used in industry. Its effects on the cochlea have been extensively studied in animals, and epidemiological and animal evidence indicates an impact on balance. However, its influence on the peripheral vestibular receptor has yet to be investigated.

View Article and Find Full Text PDF

Background: Carbon disulfide (CS) exacerbates the effect of noise on hearing, and disrupts the vestibular system. The goal of this study was to determine whether these effects are also observed with intermittent CS exposure.

Methods: Rats were exposed for 4 weeks (5 days/week, 6 h/day) to a band noise at 106 dB SPL either alone or combined with continuous (63 ppm or 250 ppm) or intermittent (15 min/h or 2 × 15 min/h at 250 ppm) CS.

View Article and Find Full Text PDF

Volatile organic solvents are frequently present in industrial atmospheres. Their lipophilic properties mean they quickly reach the brain following inhalation. Acute exposure to some solvents perturbs the middle ear reflex, which could jeopardize cochlear protection against loud noises.

View Article and Find Full Text PDF
Article Synopsis
  • Absence epilepsy leads to specific brain activity changes, notably spike-and-wave discharges, which impact consciousness and cognitive function.
  • In the GAERS rat model of this condition, sensory processing is disrupted in the primary somatosensory cortex, particularly affecting whisker-related information.
  • Despite these disruptions, GAERS rats perform normally on texture discrimination tasks, indicating possible compensatory mechanisms in their brain's neuronal network.
View Article and Find Full Text PDF

Chronic occupational exposure to carbon disulfide (CS2) has debilitating motor and sensory effects in humans, which can increase the risk of falls. Although no mention of vestibulotoxic effects is contained in the literature, epidemiological and experimental data suggest that CS2 could cause low-frequency hearing loss when associated with noise exposure. Low-frequency noise might also perturb the peripheral balance receptor through an as-yet unclear mechanism.

View Article and Find Full Text PDF

Synchrotron-generated microplanar beams (microbeams) provide the most stereo-selective irradiation modality known today. This novel irradiation modality has been shown to control seizures originating from eloquent cortex causing no neurological deficit in experimental animals. To test the hypothesis that application of microbeams in the hippocampus, the most common source of refractory seizures, is safe and does not induce severe side effects, we used microbeams to induce transections to the hippocampus of healthy rats.

View Article and Find Full Text PDF

Synchrotron-generated X-ray (SRX) microbeams deposit high radiation doses to submillimetric targets whilst minimizing irradiation of neighboring healthy tissue. We developed a new radiosurgical method which demonstrably transects cortical brain tissue without affecting adjacent regions. We made such image-guided SRX microtransections in the left somatosensory cortex in a rat model of generalized epilepsy using high radiation doses (820 Gy) in thin (200 μm) parallel slices of tissue.

View Article and Find Full Text PDF

Aims: Mesial temporal lobe epilepsy (MTLE) is the most common form of drug-refractory epilepsy. Most of the morphological and electrophysiological features of human MTLE can be reproduced in a mouse by a unilateral intrahippocampal injection of kainate (MTLE mouse model). The effects of antiepileptic drugs (AEDs) on the occurrence of recurrent focal hippocampal seizures in this model remain to be specified.

View Article and Find Full Text PDF

Epilepsy is one of the most important neurological diseases. It concerns about 1% of the population worldwide. Despite the discovery of new molecules, one third of epileptic patients are resistant to anti-epileptic drugs and among them only a few can benefit from resective surgery.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the effects of prolonged hyperthermic seizures on the hippocampal activity of mice, specifically looking at how these seizures might influence mesio-temporal lobe epilepsy (MTLE).
  • Researchers performed experiments on C57BL/6J mice, observing changes in hippocampal rhythms and seizure susceptibility after exposure to hyperthermic conditions at a young age (postnatal day 10).
  • Results indicated that while one episode of hyperthermic seizures didn't directly cause increased seizure activity later, it did accelerate the development of epilepsy and created imbalances in hippocampal functions, affecting seizure dynamics in adult mice.
View Article and Find Full Text PDF

Since approximately two thirds of epileptic patients are non-eligible for surgery, local axonal fiber transections might be of particular interest for them. Micrometer to millimeter wide synchrotron-generated X-ray beamlets produced by spatial fractionation of the main beam could generate such fiber disruptions non-invasively. The aim of this work was to optimize irradiation parameters for the induction of fiber transections in the rat brain white matter by exposure to such beamlets.

View Article and Find Full Text PDF

Radiotherapy has shown some efficacy for epilepsies but the insufficient confinement of the radiation dose to the pathological target reduces its indications. Synchrotron-generated X-rays overcome this limitation and allow the delivery of focalized radiation doses to discrete brain volumes via interlaced arrays of microbeams (IntMRT). Here, we used IntMRT to target brain structures involved in seizure generation in a rat model of absence epilepsy (GAERS).

View Article and Find Full Text PDF

The organophosphorus nerve agent soman is an irreversible cholinesterase (ChE) inhibitor that can produce long-lasting seizures and seizure-related brain damage (SRBD) in which acetylcholine and glutamate are involved. Since these neurotransmitters play a key-role in the auditory function, it was hypothesized that a hearing test may be an efficient way for detecting the central effects of soman intoxication. In the present study, distortion product otoacoustic emissions (DPOAEs), a non-invasive audiometric method, were used in rats administered with soman (70 μg/kg).

View Article and Find Full Text PDF
Article Synopsis
  • Microbeam Radiation Therapy (MRT) is a specialized technique for treating brain tumors using tiny X-ray beams, allowing for high doses of radiation to be delivered specifically to tumors while protecting normal tissues due to their resistance to these treatments.
  • A new irradiation method was developed that utilizes interlaced microplanar beams, resulting in effective targeting of brain tissue, evidenced by localized blood vessel changes and damage in treated areas without affecting surrounding healthy tissue.
  • The study shows promising results for potential human applications, suggesting that MRT could reduce detrimental effects on normal brain tissue while effectively treating tumors, especially evident in models of epilepsy.
View Article and Find Full Text PDF

Exposure to acrylonitrile, a high-production industrial chemical, can promote noise-induced hearing loss (NIHL) in the rat even though this agent does not itself produce permanent hearing loss. The mechanism by which acrylonitrile promotes NIHL includes oxidative stress as antioxidant drugs can partially protect the cochlea from acrylonitrile + noise. Acrylonitrile depletes glutathione levels while noise can increase the formation of reactive oxygen species.

View Article and Find Full Text PDF

Potentiation of noise-induced hearing loss (NIHL) by specific chemical contaminants and therapeutic drugs represents a distinct public health risk. Prediction of chemicals that yield such potentiation has not been successful because such agents differ markedly in structure. One mechanism for this potentiation that has garnered support is oxidative injury to the cochlea.

View Article and Find Full Text PDF

The organophosphorus nerve agent soman is an irreversible cholinesterase (ChE) inhibitor that can produce long-lasting seizures and brain damage in which the neurotransmitters acetylcholine and glutamate are involved. These same neurotransmitters play key-roles in the auditory function. It was then assumed that exploring the hearing function may provide markers of the central events triggered by soman intoxication.

View Article and Find Full Text PDF

Ethylbenzene + toluene are known individually to have ototoxic potential at high exposure levels and with prolonged exposure times generally of 4-16 weeks. Both ethylbenzene + toluene are minor constituents of JP-8 jet fuel; this fuel has recently been determined to promote susceptibility to noise-induced hearing loss. Therefore, the current study evaluates the ototoxic potential of combined exposure to ethylbenzene + toluene exposure in a ratio calculated from the average found in three laboratories.

View Article and Find Full Text PDF

We report on the transient and persistent effects of JP-8 jet fuel exposure on auditory function in rats. JP-8 has become the standard jet fuel utilized in the United States and North Atlantic Treaty Organization countries for military use and it is closely related to Jet A fuel, which is used in U.S.

View Article and Find Full Text PDF