Publications by authors named "Pouya Rajaeipour"

Adaptive optics, in combination with multi-photon techniques, is a powerful approach to image deep into a specimen. Remarkably, virtually all adaptive optics schemes today rely on wavefront modulators that are reflective, diffractive or both. This, however, can pose a severe limitation for applications.

View Article and Find Full Text PDF

Sample-induced optical aberrations in microscopy are, in general, field dependent, limiting their correction via pupil adaptive optics (AO) to the center of the available field-of-view (FoV). This is a major hindrance, particularly for deep tissue imaging, where AO has a significant impact. We present a new wide-field AO microscopy scheme, in which the deformable element is located at the pupil plane of the objective.

View Article and Find Full Text PDF

Adaptive optics (AO) represents a powerful range of image correction technologies with proven benefits for many life-science microscopy methods. However, the complexity of adding a reflective wavefront modulator and in some cases a wavefront sensor into an already complicated microscope has made AO prohibitive for its widespread adaptation in microscopy systems. We present here the design and performance of a compact fluorescence microscope using a fully refractive optofluidic wavefront modulator, yielding imaging performance on par with that of conventional deformable mirrors, both in correction fidelity and articulation.

View Article and Find Full Text PDF

We present a novel open-loop control method for an electrostatically actuated optofluidic refractive phase modulator, and demonstrate its performance for high-order aberration correction. Contrary to conventional electrostatic deformable mirrors, an optofluidic modulator is capable of bidirectional (push-pull) actuation through hydro-mechanical coupling. Control methods based on matrix pseudo-inversion, the common approach used for deformable mirrors, thus perform sub-optimally for such a device.

View Article and Find Full Text PDF

We introduce a transmissive refractive adaptive optics system featuring a deformable transparent optofluidic wavefront modulator and a sensorless wavefront error estimation algorithm. The wavefront modulator consists of a cavity filled with an optical liquid which is sealed by a deformable elastic polymer membrane. Deformation of the membrane is achieved through electrostatic actuation using 25 transparent indium tin oxide electrodes buried in the cavity.

View Article and Find Full Text PDF